Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration.

Kisha A Scarlett, El-Shaddai Z White, Christopher J Coke, Jada R Carter, Latoya K Bryant, Cimona V Hinton
Author Information
  1. Kisha A Scarlett: Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.
  2. El-Shaddai Z White: Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.
  3. Christopher J Coke: Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.
  4. Jada R Carter: Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.
  5. Latoya K Bryant: Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.
  6. Cimona V Hinton: Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia. chinton@cau.edu.

Abstract

G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease. This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. .

References

  1. Pharmacol Rev. 2005 Sep;57(3):289-98 [PMID: 16109836]
  2. Semin Cancer Biol. 2004 Jun;14(3):171-9 [PMID: 15246052]
  3. Adv Cancer Res. 2014;124:31-82 [PMID: 25287686]
  4. Int J Oncol. 2005 Nov;27(5):1329-39 [PMID: 16211229]
  5. Methods Mol Biol. 2012;827:123-42 [PMID: 22144272]
  6. Indian J Urol. 2012 Jan;28(1):9-14 [PMID: 22557710]
  7. FEBS Lett. 2008 Jun 18;582(14):2093-101 [PMID: 18460342]
  8. Front Endocrinol (Lausanne). 2013 Aug 15;4:100 [PMID: 23966979]
  9. Oncotarget. 2014 Aug 15;5(15):5852-72 [PMID: 25115386]
  10. Cell Physiol Biochem. 2013;32(1):74-85 [PMID: 23839224]
  11. Curr Mol Med. 2014 Feb;14(2):199-208 [PMID: 24467208]
  12. J Biol Chem. 2005 Mar 18;280(11):9895-903 [PMID: 15632118]
  13. Sci Signal. 2011 Sep 20;4(191):ra60 [PMID: 21934106]
  14. Nat Rev Cancer. 2002 Feb;2(2):133-42 [PMID: 12635176]
  15. Mol Pharmacol. 2005 Feb;67(2):460-9 [PMID: 15509716]
  16. Nat Rev Immunol. 2017 Sep;17 (9):559-572 [PMID: 28555670]
  17. Neoplasia. 2006 Apr;8(4):290-301 [PMID: 16756721]
  18. PLoS One. 2011;6(9):e23901 [PMID: 21915267]
  19. EMBO Rep. 2004 Jan;5(1):30-4 [PMID: 14710183]
  20. J Cell Sci. 2013 Oct 1;126(Pt 19):4514-26 [PMID: 23868972]
  21. Expert Rev Mol Med. 2009 Jan 20;11:e3 [PMID: 19152719]
  22. Oncogene. 2014 Aug 14;33(33):4203-12 [PMID: 24056963]
  23. Blood. 2009 Jul 16;114(3):619-29 [PMID: 19443661]
  24. Integr Biol (Camb). 2012 Jun;4(6):615-27 [PMID: 22546924]
  25. Prog Mol Biol Transl Sci. 2013;115:375-420 [PMID: 23415099]
  26. J Biomol Screen. 2013 Oct;18(9):947-66 [PMID: 23945874]
  27. Curr Opin Cell Biol. 2015 Oct;36:103-12 [PMID: 26363959]
  28. Genes Cells. 2012 Sep;17(9):737-47 [PMID: 22892070]
  29. Drug Discov Today. 2006 Jun;11(11-12):541-9 [PMID: 16713906]
  30. Nat Rev Cancer. 2007 Feb;7(2):79-94 [PMID: 17251915]
  31. J Cell Sci. 2010 Feb 1;123(Pt 3):401-12 [PMID: 20053635]
  32. Clin Cancer Res. 2011 Apr 15;17(8):2074-80 [PMID: 21349998]
  33. Clin Cancer Res. 2010 Jun 1;16(11):2927-31 [PMID: 20484021]
  34. J Biol Chem. 2016 May 6;291(19):9991-10005 [PMID: 26841863]
  35. Cell Adh Migr. 2011 Mar-Apr;5(2):170-80 [PMID: 21178402]
  36. J Biol Chem. 2011 Sep 16;286(37):32188-97 [PMID: 21730065]
  37. Pharmacol Rev. 2006 Sep;58(3):389-462 [PMID: 16968947]
  38. J Neuroendocrinol. 2008 May;20 Suppl 1:10-4 [PMID: 18426493]
  39. Eur J Immunol. 2008 Feb;38(2):537-49 [PMID: 18200497]
  40. Nat Rev Cancer. 2004 Jul;4(7):540-50 [PMID: 15229479]
  41. J Biol Chem. 2006 Dec 22;281(51):39542-9 [PMID: 17056591]
  42. Pharmacol Ther. 2011 Sep;131(3):351-8 [PMID: 21600920]
  43. Science. 1996 May 10;272(5263):872-7 [PMID: 8629022]
  44. Nat Rev Drug Discov. 2011 Jan;10(1):47-60 [PMID: 21193867]
  45. Mol Cell Biol. 2013 Jul;33(14):2671-82 [PMID: 23648482]
  46. EMBO J. 2001 May 15;20(10):2497-507 [PMID: 11350939]
  47. J Cell Biol. 2014 Oct 27;207(2):299-315 [PMID: 25349262]
  48. Pharmacol Rev. 2002 Jun;54(2):161-202 [PMID: 12037135]

Grants

  1. G12 MD007590/NIMHD NIH HHS
  2. P20 MD002285/NIMHD NIH HHS
  3. R01 GM106020/NIGMS NIH HHS
  4. R25 GM060414/NIGMS NIH HHS

MeSH Term

Benzylamines
Cannabinoids
Cell Adhesion
Cell Line, Tumor
Cell Movement
Chemokine CXCL12
Cyclams
Down-Regulation
Female
GTP-Binding Protein alpha Subunits, G12-G13
Gene Expression Regulation, Neoplastic
HEK293 Cells
Heterocyclic Compounds
Humans
Male
Neoplasms
PC-3 Cells
Receptor, Cannabinoid, CB2
Receptors, CXCR4
rhoA GTP-Binding Protein

Chemicals

AM 1241
Benzylamines
CNR2 protein, human
CXCL12 protein, human
CXCR4 protein, human
Cannabinoids
Chemokine CXCL12
Cyclams
GNA13 protein, human
Heterocyclic Compounds
Receptor, Cannabinoid, CB2
Receptors, CXCR4
RHOA protein, human
GTP-Binding Protein alpha Subunits, G12-G13
rhoA GTP-Binding Protein
plerixafor

Word Cloud

Created with Highcharts 10.0.0cellsignalingCXCR4migrationCB2cancerreceptorheterodimerizationcellsmetastaticmechanismdecreasedinvasionGPCRentitiesagonist-boundheterodimerpotentialobservedstudysimultaneousagonistadhesionGα13RhoAexpressionuponG-protein-coupledemergedmeansalternativecancreatedyetheterodimersaffectpharmacologyremainsunknownPreviousobservationssuggestedbiochemicalantagonismGPCRsCNR2formedphysiologicallynonfunctionalmembraneinhibitingHoweverreducedresponsiblefunctionaloutputsremainelusivenowdelineateswherebyheterodimericassociationinducedtreatmentresultsCXCR4-mediatedinhibitionGα13/RhoAaxisActivationcognateligandCXCL12stimulatesGNA13subsequentlysmallGTPaserequireddirectionalstudiesprostatedemonstrateproteinlevelsCXCR4/CB2stimulationFurthermoreagonist-inducedabrogatedRhoA-mediatedcytoskeletalrearrangementresultingattenuationendothelialbarrierFinallyreductionintegrinα5ITGA5supportedextracellularmatricesTakentogetherdataidentifynovelpharmacologicmodulationtumorcontextdiseaseinvestigatesinhibitsAgonist-inducedHeterodimerizationInhibitsGα13/RhoA-mediatedMigration

Similar Articles

Cited By