Cryo-EM structure of the exocyst complex.

Kunrong Mei, Yan Li, Shaoxiao Wang, Guangcan Shao, Jia Wang, Yuehe Ding, Guangzuo Luo, Peng Yue, Jun-Jie Liu, Xinquan Wang, Meng-Qiu Dong, Hong-Wei Wang, Wei Guo
Author Information
  1. Kunrong Mei: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
  2. Yan Li: Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
  3. Shaoxiao Wang: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
  4. Guangcan Shao: National Institute of Biological Sciences, Beijing, China.
  5. Jia Wang: Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
  6. Yuehe Ding: National Institute of Biological Sciences, Beijing, China.
  7. Guangzuo Luo: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
  8. Peng Yue: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
  9. Jun-Jie Liu: Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
  10. Xinquan Wang: Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
  11. Meng-Qiu Dong: National Institute of Biological Sciences, Beijing, China. ORCID
  12. Hong-Wei Wang: Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China. hongweiwang@tsinghua.edu.cn.
  13. Wei Guo: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. guowei@sas.upenn.edu. ORCID

Abstract

The exocyst is an evolutionarily conserved octameric protein complex that mediates the tethering of post-Golgi secretory vesicles to the plasma membrane during exocytosis and is implicated in many cellular processes such as cell polarization, cytokinesis, ciliogenesis and tumor invasion. Using cryo-EM and chemical cross-linking MS (CXMS), we solved the structure of the Saccharomyces cerevisiae exocyst complex at an average resolution of 4.4 Å. Our model revealed the architecture of the exocyst and led to the identification of the helical bundles that mediate the assembly of the complex at its core. Sequence analysis suggests that these regions are evolutionarily conserved across eukaryotic systems. Additional cell biological data suggest a mechanism for exocyst assembly that leads to vesicle tethering at the plasma membrane.

References

  1. J Struct Biol. 2015 Nov;192(2):204-8 [PMID: 26278979]
  2. J Struct Biol. 2016 Aug;195(2):207-215 [PMID: 27270241]
  3. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  4. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  5. J Biol Chem. 2010 Apr 2;285(14):10424-33 [PMID: 20139078]
  6. Nat Struct Mol Biol. 2016 Aug;23(8):761-3 [PMID: 27428774]
  7. Cell Rep. 2016 May 31;15(9):2012-24 [PMID: 27210749]
  8. J Cell Biol. 2013 Jul 8;202(1):97-111 [PMID: 23836930]
  9. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  10. J Mol Biol. 2007 Aug 10;371(2):410-21 [PMID: 17583731]
  11. Mol Biol Cell. 2007 Nov;18(11):4483-92 [PMID: 17761530]
  12. Nat Methods. 2012 Sep;9(9):853-4 [PMID: 22842542]
  13. Nat Struct Mol Biol. 2006 Jul;13(7):577-81 [PMID: 16826234]
  14. Dev Cell. 2001 Oct;1(4):527-37 [PMID: 11703943]
  15. J Mol Biol. 2006 Feb 10;356(1):9-21 [PMID: 16359701]
  16. Nat Methods. 2014 Jan;11(1):63-5 [PMID: 24213166]
  17. Cell. 2014 Aug 28;158(5):1123-1135 [PMID: 25171412]
  18. J Struct Biol. 2007 Jan;157(1):38-46 [PMID: 16859925]
  19. Trends Cell Biol. 2002 Jun;12(6):247-9 [PMID: 12074877]
  20. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  21. EMBO J. 2005 Jun 15;24(12):2064-74 [PMID: 15920473]
  22. J Cell Sci. 2002 Jul 1;115(Pt 13):2627-37 [PMID: 12077354]
  23. J Cell Sci. 2015 Aug 15;128(16):2957-64 [PMID: 26240175]
  24. J Cell Biol. 1995 Jul;130(2):299-312 [PMID: 7615633]
  25. J Cell Biol. 2004 Dec 6;167(5):889-901 [PMID: 15583031]
  26. Am J Physiol Cell Physiol. 2006 Jan;290(1):C11-26 [PMID: 16338975]
  27. Dev Cell. 2012 May 15;22(5):967-78 [PMID: 22595671]
  28. Nat Struct Mol Biol. 2010 Nov;17(11):1292-7 [PMID: 20972446]
  29. J Struct Biol. 1999 Apr-May;125(2-3):185-95 [PMID: 10222274]
  30. Nat Struct Mol Biol. 2005 Dec;12(12):1094-100 [PMID: 16249794]
  31. Nat Struct Mol Biol. 2010 Feb;17(2):180-6 [PMID: 20062059]
  32. Nat Struct Mol Biol. 2016 Jan;23(1):59-66 [PMID: 26656853]
  33. Nat Cell Biol. 2002 Jan;4(1):73-8 [PMID: 11744922]
  34. EMBO J. 1996 Dec 2;15(23):6483-94 [PMID: 8978675]
  35. J Cell Biol. 2008 Jan 14;180(1):145-58 [PMID: 18195105]
  36. Nat Struct Mol Biol. 2006 Jun;13(6):555-6 [PMID: 16699513]
  37. Nat Cell Biol. 2001 Apr;3(4):353-60 [PMID: 11283608]
  38. Anal Chem. 2016 Apr 19;88(8):4461-9 [PMID: 27010980]
  39. PLoS One. 2009;4(2):e4443 [PMID: 19214222]
  40. J Struct Biol. 2015 Nov;192(2):174-8 [PMID: 26370395]
  41. Annu Rev Cell Dev Biol. 2010;26:137-56 [PMID: 19575650]
  42. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E41-50 [PMID: 26607451]
  43. J Vis Exp. 2011 Mar 28;(49): [PMID: 21490573]
  44. Trends Cell Biol. 2000 Jun;10(6):251-5 [PMID: 10802541]
  45. Sci Rep. 2017 Jan 18;7:40909 [PMID: 28098232]
  46. Nat Methods. 2013 Jun;10(6):584-90 [PMID: 23644547]
  47. Nature. 1998 Sep 24;395(6700):347-53 [PMID: 9759724]
  48. J Biol Chem. 2003 Dec 19;278(51):51743-8 [PMID: 14525976]
  49. Nat Protoc. 2008;3(12):1941-74 [PMID: 19180078]
  50. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
  51. Curr Opin Cell Biol. 2012 Aug;24(4):475-83 [PMID: 22728063]
  52. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8 [PMID: 24782522]
  53. Science. 2012 Sep 14;337(6100):1348-52 [PMID: 22984071]
  54. Nat Cell Biol. 2002 Jan;4(1):66-72 [PMID: 11740492]
  55. Nat Methods. 2012 Sep;9(9):904-6 [PMID: 22772728]
  56. Mol Biol Cell. 2014 Nov 15;25(23):3813-22 [PMID: 25232005]
  57. Traffic. 2012 Jul;13(7):898-907 [PMID: 22420621]
  58. Nature. 2016 Sep 1;537(7618):107-111 [PMID: 27556945]
  59. Curr Opin Cell Biol. 2009 Aug;21(4):537-42 [PMID: 19473826]
  60. Cell. 2017 Jan 26;168(3):400-412.e18 [PMID: 28129539]
  61. J Struct Biol. 2003 Jun;142(3):334-47 [PMID: 12781660]
  62. Elife. 2014 Aug 13;3:e03665 [PMID: 25122622]
  63. Nat Methods. 2017 Apr;14(4):331-332 [PMID: 28250466]
  64. Cell. 1998 Feb 20;92(4):559-71 [PMID: 9491896]
  65. Nat Commun. 2017 Jan 23;8:14236 [PMID: 28112172]
  66. EMBO J. 2003 Jul 1;22(13):3267-78 [PMID: 12839989]
  67. Nat Cell Biol. 1999 May;1(1):E17-22 [PMID: 10559876]
  68. J Biol Chem. 2017 Jan 27;292(4):1187-1196 [PMID: 27994050]
  69. Curr Biol. 2010 Nov 9;20(21):R943-52 [PMID: 21056839]
  70. Nat Struct Mol Biol. 2005 Oct;12(10):879-85 [PMID: 16155582]
  71. Curr Biol. 2002 Mar 19;12(6):R212-4 [PMID: 11909549]
  72. Trends Cell Biol. 1999 Apr;9(4):150-3 [PMID: 10203793]
  73. EMBO J. 2007 Sep 19;26(18):4053-65 [PMID: 17717527]
  74. J Struct Biol. 2012 Dec;180(3):519-30 [PMID: 23000701]

Grants

  1. R01 GM111128/NIGMS NIH HHS

MeSH Term

Amino Acid Motifs
Biological Transport
Cell Membrane
Cross-Linking Reagents
Cryoelectron Microscopy
Cytoplasm
Exocytosis
Golgi Apparatus
Image Processing, Computer-Assisted
Mass Spectrometry
Protein Binding
Protein Multimerization
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Secretory Vesicles
Vesicular Transport Proteins

Chemicals

Cross-Linking Reagents
Saccharomyces cerevisiae Proteins
Vesicular Transport Proteins

Word Cloud

Created with Highcharts 10.0.0exocystcomplexevolutionarilyconservedtetheringplasmamembranecellstructureassemblyoctamericproteinmediatespost-GolgisecretoryvesiclesexocytosisimplicatedmanycellularprocessespolarizationcytokinesisciliogenesistumorinvasionUsingcryo-EMchemicalcross-linkingMSCXMSsolvedSaccharomycescerevisiaeaverageresolution44 ÅmodelrevealedarchitectureledidentificationhelicalbundlesmediatecoreSequenceanalysissuggestsregionsacrosseukaryoticsystemsAdditionalbiologicaldatasuggestmechanismleadsvesicleCryo-EM

Similar Articles

Cited By