Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species.

Yuliya S Nikolova, Keith A Misquitta, Brad R Rocco, Thomas D Prevot, Annchen R Knodt, Jacob Ellegood, Aristotle N Voineskos, Jason P Lerch, Ahmad R Hariri, Etienne Sibille, Mounira Banasr
Author Information
  1. Yuliya S Nikolova: Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada.
  2. Keith A Misquitta: Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada.
  3. Brad R Rocco: Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada.
  4. Thomas D Prevot: Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada.
  5. Annchen R Knodt: Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA.
  6. Jacob Ellegood: Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada. ORCID
  7. Aristotle N Voineskos: Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada.
  8. Jason P Lerch: Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada.
  9. Ahmad R Hariri: Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA.
  10. Etienne Sibille: Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada.
  11. Mounira Banasr: Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada. mounira.banasr@camh.ca.

Abstract

Parallel clinical and preclinical research have begun to illuminate the biological basis of stress-related disorders, including major depression, but translational bridges informing discrete mechanistic targets for intervention are missing. To address this critical need, we used structural MRI in a mouse model and in a large human sample to examine stress effects on brain structure that may be conserved across species. Specifically, we focused on a previously unexplored approach, whole-brain structural covariance, as it reflects synchronized changes in neuroanatomy, potentially due to mutual trophic influences or shared plasticity across regions. Using the unpredictable chronic mild stress (UCMS) paradigm in mouse we first demonstrate that UCMS-induced elevated behavioral emotionality correlates with increased size of the amygdala and other corticolimbic regions. We further identify focal increases in the amygdala's 'hubness' (degree and strength) set against the background of a global stress-related loss of network clustering and modularity. These macroscopic changes are supported on the molecular level by increased postsynaptic density-95 protein in the amygdala, consistent with stress-induced plastic changes and synaptic strengthening. Finally, we provide clinical evidence that strikingly similar structural network reorganization patterns exist in young adults reporting high childhood trauma and increased mood symptoms. Collectively, we provide initial translational evidence for a conserved stress-related increase in amygdala-centered structural synchrony, as measured by enhanced structural covariance, which is paralleled by a decrease in global structural synchrony. This putative trade-off reflected in increased amygdala-centered plastic changes at the expense of global structural dedifferentiation may represent a mechanistic pathway for depression and related psychopathology.

References

  1. Neuroimage. 2016 Jan 15;125:311-331 [PMID: 26515902]
  2. Mol Psychiatry. 2008 Nov;13(11):993-1000 [PMID: 18504424]
  3. Transl Psychiatry. 2014 Apr 08;4:e378 [PMID: 24713859]
  4. Biol Psychiatry. 2009 May 1;65(9):812-8 [PMID: 19028381]
  5. J Neurosci. 2005 Sep 7;25(36):8303-10 [PMID: 16148238]
  6. JAMA. 2003 Jun 18;289(23):3095-105 [PMID: 12813115]
  7. Curr Protoc Pharmacol. 2013 Jun;Chapter 5:Unit 5.65 [PMID: 23744712]
  8. Neural Plast. 2016;2016:8056370 [PMID: 26881133]
  9. Neurobiol Stress. 2015 Jun 09;1:195-208 [PMID: 26844236]
  10. Biol Psychiatry. 2005 May 15;57(10):1079-88 [PMID: 15866546]
  11. Biol Psychiatry. 2014 Jun 1;75(11):892-900 [PMID: 24268662]
  12. Int J Neuropsychopharmacol. 2015 Apr 21;18(10):pyv046 [PMID: 25899067]
  13. Am J Psychiatry. 2011 Jun;168(6):642-8 [PMID: 21362744]
  14. Neuropsychopharmacology. 2011 Jan;36(2):529-38 [PMID: 20962768]
  15. J Neurobiol. 2001 Nov 15;49(3):245-53 [PMID: 11745662]
  16. Biol Psychiatry. 2016 May 15;79(10 ):840-849 [PMID: 26422005]
  17. Nat Neurosci. 2015 Oct;18(10 ):1347-52 [PMID: 26404709]
  18. Neuroimage. 2015 Jan 15;105:312-22 [PMID: 25462693]
  19. Science. 2011 Nov 25;334(6059):1151-3 [PMID: 22116887]
  20. Nat Med. 2010 Nov;16(11):1328-32 [PMID: 20953200]
  21. J Am Acad Child Adolesc Psychiatry. 2010 Jan;49(1):42-51 [PMID: 20215925]
  22. Neuroimage Clin. 2015 May 22;8:536-42 [PMID: 26110111]
  23. Biol Psychiatry. 2000 Oct 15;48(8):766-77 [PMID: 11063973]
  24. Biol Psychiatry. 2002 May 1;51(9):708-14 [PMID: 11983184]
  25. Mol Psychiatry. 2011 Jun;16(6):664-71 [PMID: 21242990]
  26. Behav Brain Res. 2015 Nov 1;294:123-30 [PMID: 26072393]
  27. J Neurosci Methods. 2011 Apr 15;197(1):21-31 [PMID: 21277897]
  28. PLoS One. 2014 Mar 27;9(3):e93432 [PMID: 24676455]
  29. Arch Gen Psychiatry. 2007 Jun;64(6):651-60 [PMID: 17548747]
  30. Neuroscience. 2004;125(1):1-6 [PMID: 15051139]
  31. Cereb Cortex. 2006 Mar;16(3):313-20 [PMID: 15901656]
  32. Ann N Y Acad Sci. 1998 Jun 30;851:311-35 [PMID: 9668623]
  33. Neuron. 2015 Feb 4;85(3):505-11 [PMID: 25654256]
  34. Neuron. 2014 Apr 16;82(2):430-43 [PMID: 24742464]
  35. Biol Psychiatry. 2004 Feb 1;55(3):263-72 [PMID: 14744467]
  36. J Neurosci. 2012 Dec 12;32(50):18087-100 [PMID: 23238724]
  37. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1387-92 [PMID: 12552118]
  38. Neuroimage Clin. 2013 Sep 06;3:332-9 [PMID: 24273717]
  39. J Neurosci. 2013 Feb 13;33(7):2889-99 [PMID: 23407947]
  40. Int J Neuropsychopharmacol. 2013 Feb;16(1):69-82 [PMID: 22339950]
  41. Am J Psychiatry. 2004 Nov;161(11):1957-66 [PMID: 15514393]
  42. Dev Sci. 2010 Jan 1;13(1):46-61 [PMID: 20121862]
  43. Behav Brain Res. 2013 Jul 1;248:80-4 [PMID: 23570859]
  44. J Neurosci. 2002 Aug 1;22(15):6810-8 [PMID: 12151561]
  45. Physiol Behav. 2015 Jun 1;145:71-83 [PMID: 25837835]
  46. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11458-63 [PMID: 12177449]
  47. Am J Psychiatry. 2012 Aug;169(8):841-50 [PMID: 22854930]
  48. Neuron. 2004 Dec 16;44(6):1043-55 [PMID: 15603746]
  49. Neuroimage. 2010 Oct 15;53(1):348-54 [PMID: 20621656]
  50. Neuroimage. 2012 Jan 16;59(2):1239-48 [PMID: 21884805]
  51. Am J Psychiatry. 2000 Jan;157(1):115-8 [PMID: 10618023]
  52. Neuroimage Clin. 2014 Jun 02;5:62-8 [PMID: 25003028]
  53. Biol Psychiatry. 2011 Apr 15;69(8):754-61 [PMID: 21292242]
  54. J Psychiatry Neurosci. 2009 Jan;34(1):41-54 [PMID: 19125212]
  55. Child Abuse Negl. 2003 Feb;27(2):169-90 [PMID: 12615092]
  56. Neuroimage. 2012 Jul 16;61(4):1129-42 [PMID: 22440648]
  57. Neuropsychopharmacology. 2014 Aug;39(9):2252-62 [PMID: 24690741]
  58. J Neurosci. 2008 Apr 30;28(18):4756-66 [PMID: 18448652]
  59. Annu Rev Neurosci. 2000;23:155-84 [PMID: 10845062]
  60. Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11378-83 [PMID: 22733766]
  61. Int J Neuropsychopharmacol. 2009 Feb;12(1):11-22 [PMID: 18544183]
  62. Nat Med. 1998 Nov;4(11):1241-3 [PMID: 9809543]
  63. J Neurobiol. 2004 Aug;60(2):236-48 [PMID: 15266654]
  64. Cereb Cortex. 2011 Sep;21(9):2056-64 [PMID: 21263035]
  65. Mol Psychiatry. 2016 Jul;21(7):894-902 [PMID: 26416545]
  66. Semin Clin Neuropsychiatry. 2002 Oct;7(4):234-42 [PMID: 12382206]
  67. Eur Arch Psychiatry Clin Neurosci. 2011 Jun;261(4):303-7 [PMID: 20820793]
  68. Nat Med. 2012 Sep;18(9):1413-7 [PMID: 22885997]
  69. Neuroimage. 2011 Aug 15;57(4):1534-41 [PMID: 21664280]
  70. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5573-8 [PMID: 18391224]
  71. Arch Gen Psychiatry. 2010 Nov;67(11):1128-38 [PMID: 21041614]
  72. BMC Neurosci. 2012 Jan 04;13:4 [PMID: 22217209]
  73. Biol Psychiatry. 2003 Feb 15;53(4):338-44 [PMID: 12586453]
  74. JAMA Psychiatry. 2015 May;72(5):446-55 [PMID: 25786193]
  75. Biol Psychiatry. 2004 Nov 1;56(9):640-50 [PMID: 15522247]
  76. Nature. 1997 Apr 24;386(6627):824-7 [PMID: 9126739]
  77. Eur Neuropsychopharmacol. 2012 Jan;22(1):1-16 [PMID: 21723712]
  78. Neuropsychobiology. 2005;52(2):90-110 [PMID: 16037678]
  79. Dev Psychopathol. 2015 Nov;27(4 Pt 2):1577-89 [PMID: 26535945]
  80. Am J Psychiatry. 2007 Oct;164(10 ):1476-88 [PMID: 17898336]
  81. Annu Rev Psychol. 1997;48:191-214 [PMID: 9046559]
  82. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13773-8 [PMID: 16174729]
  83. Biol Psychiatry. 2008 Feb 15;63(4):385-90 [PMID: 17640621]

Grants

  1. R01 AG049789/NIA NIH HHS
  2. R01 DA033369/NIDA NIH HHS
  3. R01 MH077159/NIMH NIH HHS
  4. BPF144490/CIHR

MeSH Term

Adolescent
Amygdala
Animals
Behavior, Animal
Brain
Case-Control Studies
Depressive Disorder, Major
Disease Models, Animal
Female
Humans
Magnetic Resonance Imaging
Male
Mice
Mice, Inbred BALB C
Stress, Psychological
Young Adult

Word Cloud

Created with Highcharts 10.0.0structuralchangesincreasedstress-relatedstressconservedacrossglobalnetworkclinicaldepressiontranslationalmechanisticmousebrainmayspeciescovarianceregionschronicbehavioralamygdalaplasticprovideevidenceamygdala-centeredsynchronyParallelpreclinicalresearchbegunilluminatebiologicalbasisdisordersincludingmajorbridgesinformingdiscretetargetsinterventionmissingaddresscriticalneedusedMRImodellargehumansampleexamineeffectsstructureSpecificallyfocusedpreviouslyunexploredapproachwhole-brainreflectssynchronizedneuroanatomypotentiallyduemutualtrophicinfluencessharedplasticityUsingunpredictablemildUCMSparadigmfirstdemonstrateUCMS-inducedelevatedemotionalitycorrelatessizecorticolimbicidentifyfocalincreasesamygdala's'hubness'degreestrengthsetbackgroundlossclusteringmodularitymacroscopicsupportedmolecularlevelpostsynapticdensity-95proteinconsistentstress-inducedsynapticstrengtheningFinallystrikinglysimilarreorganizationpatternsexistyoungadultsreportinghighchildhoodtraumamoodsymptomsCollectivelyinitialincreasemeasuredenhancedparalleleddecreaseputativetrade-offreflectedexpensededifferentiationrepresentpathwayrelatedpsychopathologyShiftingpriorities:highlyadaptations

Similar Articles

Cited By