Toxicity Evaluation of Graphene Oxide and Titania Loaded Nafion Membranes in Zebrafish.

Roberta Pecoraro, Daniele D'Angelo, Simona Filice, Silvia Scalese, Fabiano Capparucci, Fabio Marino, Carmelo Iaria, Giulia Guerriero, Daniele Tibullo, Elena M Scalisi, Antonio Salvaggio, Isabella Nicotera, Maria V Brundo
Author Information
  1. Roberta Pecoraro: Department of Biological, Geological and Environmental Science, University of Catania, Catania, Italy.
  2. Daniele D'Angelo: CNR-IMM, Catania, Italy.
  3. Simona Filice: CNR-IMM, Catania, Italy.
  4. Silvia Scalese: CNR-IMM, Catania, Italy.
  5. Fabiano Capparucci: Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
  6. Fabio Marino: Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
  7. Carmelo Iaria: Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
  8. Giulia Guerriero: Department of Biology, University of Naples Federico II, Naples, Italy.
  9. Daniele Tibullo: Department of Biomedical and Biotecnological Sciences, University of Catania, Catania, Italy.
  10. Elena M Scalisi: Department of Biological, Geological and Environmental Science, University of Catania, Catania, Italy.
  11. Antonio Salvaggio: Experimental Zooprophylactic Institute of Sicily, Catania, Italy.
  12. Isabella Nicotera: Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy.
  13. Maria V Brundo: Department of Biological, Geological and Environmental Science, University of Catania, Catania, Italy.

Abstract

The use of nanomaterials in several application fields has received in the last decades a great attention due to their peculiar properties, but also raised many doubts about possible toxicity when these materials are used for some specific applications, such as water purification. Indeed a careful investigation is needed in order to exclude possible harmful side effects related to the use of nanotechnology. Nanoparticles effects on the marine organisms may depend on their chemical composition, size, surface structure, solubility, shape and how the individual nanoparticles aggregate together. In order to make the most of their potential, without polluting the environment, many researchers are trying to trap them into some kind of matrix that keeps them active but avoids their dispersion in the environment. In this study we have tested nanocomposite membranes prepared using Nafion polymer combined with various fillers, such as anatase-type TiO nanoparticles and graphene oxide. The non-toxicity of these nanocomposites, already shown to be effective for water purification applications in our previous studies, was recognized by testing the effect of the different materials on zebrafish embryos. Zebrafish was considered an excellent model for ecotoxicological studies and for this motivation zebrafish embryos were exposed to different concentrations of free nanoparticles and to the nanocomposite membranes. As biomarkers of exposure, we evaluated the expression of heme-oxygenase 1 and inducible Nitric Oxide Synthases by immunohistochemistry and gene expression. Embryo toxicity test showed that nor sublethal effects neither mortality were caused by the different nanoparticles and nano-systems tested. Only zebrafish larvae exposed to free nanoparticles have shown a different response to antibodies anti-heme-oxygenase 1 and anti- inducible Nitric Oxide Synthases. The immunolocalization analysis in fact has highlighted an increase in the synthesis of these biomarkers.

Keywords

References

  1. ACS Nano. 2011 Sep 27;5(9):6971-80 [PMID: 21851105]
  2. Mutat Res. 2004 Aug 18;552(1-2):247-68 [PMID: 15288556]
  3. Aquat Toxicol. 2010 Apr 15;97(2):79-87 [PMID: 20061034]
  4. ACS Nano. 2011 Mar 22;5(3):1805-17 [PMID: 21323332]
  5. Curr Protoc Toxicol. 2017 Nov 8;74:1.14.1-1.14.13 [PMID: 29117438]
  6. Environ Sci Pollut Res Int. 2018 Jul;25(19):18303-18313 [PMID: 29081042]
  7. Front Physiol. 2016 Apr 13;7:130 [PMID: 27148069]
  8. Chem Res Toxicol. 2014 Feb 17;27(2):159-68 [PMID: 24422439]
  9. Microsc Res Tech. 2017 Nov;80(11):1215-1220 [PMID: 28833895]
  10. J Nanosci Nanotechnol. 2008 May;8(5):2301-7 [PMID: 18572641]
  11. Adv Drug Deliv Rev. 2003 Feb 24;55(3):329-47 [PMID: 12628320]
  12. Toxicol Appl Pharmacol. 2001 Sep 15;175(3):191-9 [PMID: 11559017]
  13. Int J Pharm. 2003 Aug 27;262(1-2):1-11 [PMID: 12927382]
  14. Front Endocrinol (Lausanne). 2014 Apr 22;5:56 [PMID: 24795696]
  15. Ann N Y Acad Sci. 2005 Apr;1040:332-6 [PMID: 15891054]
  16. Chem Res Toxicol. 2012 Jan 13;25(1):15-34 [PMID: 21954945]
  17. Nat Biotechnol. 2003 Oct;21(10):1166-70 [PMID: 14520401]
  18. Adv Drug Deliv Rev. 2002 Sep 13;54(5):631-51 [PMID: 12204596]
  19. Nanotoxicology. 2011 Mar;5(1):43-54 [PMID: 21417687]
  20. Front Physiol. 2016 Apr 29;7:153 [PMID: 27199768]
  21. Biochem J. 2004 Jan 1;377(Pt 1):159-69 [PMID: 14505488]
  22. Nanotoxicology. 2014 May;8(3):295-304 [PMID: 23421642]
  23. Aquat Toxicol. 2017 Jul;188:130-137 [PMID: 28521150]
  24. Small. 2012 Nov 5;8(21):3338-49 [PMID: 22829351]
  25. Comp Biochem Physiol A Mol Integr Physiol. 2004 Aug;138(4):435-9 [PMID: 15369832]
  26. Colloids Surf B Biointerfaces. 2005 Feb 10;40(2):83-91 [PMID: 15642458]
  27. ALTEX. 2010;27(1):70-3 [PMID: 20397315]
  28. Nanoscale. 2014 Oct 7;6(19):11189-95 [PMID: 25125044]
  29. Environ Sci Technol. 2011 Dec 15;45(24):10454-62 [PMID: 22070750]
  30. Aquat Toxicol. 2011 Jan 17;101(1):13-30 [PMID: 21074869]
  31. Aquat Toxicol. 2002 Sep 10;59(1-2):1-15 [PMID: 12088630]
  32. J Nanobiotechnology. 2004 Dec 08;2(1):12 [PMID: 15588280]
  33. Nanotechnology. 2016 Jun 17;27(24):245704 [PMID: 27158973]
  34. Front Physiol. 2017 Dec 14;8:1011 [PMID: 29311953]
  35. Toxicol Sci. 2010 Jun;115(2):521-34 [PMID: 20219766]
  36. Eur J Pharm Sci. 2003 Feb;18(2):165-73 [PMID: 12594010]
  37. Environ Int. 2006 Dec;32(8):967-76 [PMID: 16859745]

Word Cloud

Created with Highcharts 10.0.0nanoparticlesdifferenteffectszebrafish1inducibleOxideusemanypossibletoxicitymaterialsapplicationswaterpurificationorderenvironmenttestednanocompositemembranesNafionoxideshownstudiesembryosZebrafishexposedfreebiomarkersexpressionheme-oxygenaseNitricSynthasesnanomaterialsseveralapplicationfieldsreceivedlastdecadesgreatattentionduepeculiarpropertiesalsoraiseddoubtsusedspecificIndeedcarefulinvestigationneededexcludeharmfulsiderelatednanotechnologyNanoparticlesmarineorganismsmaydependchemicalcompositionsizesurfacestructuresolubilityshapeindividualaggregatetogethermakepotentialwithoutpollutingresearcherstryingtrapkindmatrixkeepsactiveavoidsdispersionstudypreparedusingpolymercombinedvariousfillersanatase-typeTiOgraphenenon-toxicitynanocompositesalreadyeffectivepreviousrecognizedtestingeffectconsideredexcellentmodelecotoxicologicalmotivationconcentrationsexposureevaluatedimmunohistochemistrygeneEmbryotestshowedsublethalneithermortalitycausednano-systemslarvaeresponseantibodiesanti-heme-oxygenaseanti-immunolocalizationanalysisfacthighlightedincreasesynthesisToxicityEvaluationGrapheneTitaniaLoadedMembranesDaniorerionitricsynthasesnano-compositestitaniumdioxide

Similar Articles

Cited By