Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis.

Guo-Xin Hou, Pan-Pan Liu, Shengyi Zhang, Mengqi Yang, Jianwei Liao, Jing Yang, Yumin Hu, Wen-Qi Jiang, Shijun Wen, Peng Huang
Author Information
  1. Guo-Xin Hou: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
  2. Pan-Pan Liu: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
  3. Shengyi Zhang: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
  4. Mengqi Yang: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
  5. Jianwei Liao: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
  6. Jing Yang: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
  7. Yumin Hu: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
  8. Wen-Qi Jiang: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
  9. Shijun Wen: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. wenshj@sysucc.org.cn.
  10. Peng Huang: Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. phuang@mdanderson.org.

Abstract

Cancer side-population (SP) represents a sub-population of stem-like cancer cells that have an important role in drug resistance due to their high expression of the ATP-binding cassette transporter ABCG2 involved in drug export. Auranofin (AF), a clinical drug of gold complex that is used in treatment of rheumatoid arthritis, has been reported inducing tumor antiproliferation. However, whether AF can impact SP cells remains unclear. Our study showed that AF caused a depletion of SP cells and a downregulation of stem cell markers, and impaired their ability to form tumor colonies in vitro and incidence to develop tumors in vivo of lung cancer cells. Reactive oxygen species (ROS) had an important role in mediating AF-induced depletion of SP cells, which could be reversed by antioxidant NAC. Further study revealed that AF could also cause ATP depletion by inhibition of glycolysis. The depletion of cellular ATP might impair the function of ABCG2 pump, leading to increased drug accumulation within the cells and thus enhancing anticancer activity of chemotherapeutic agents such as adriamycin. Synergistic effect of AF and adriamycin was demonstrated both in vitro and in vivo. Simultaneous increase of ROS and inhibition of glycolysis is a novel strategy to eliminate stem-like cancer cells. Combination of AF with adriamycin seems to be promising to enhance therapeutic effectiveness.

References

  1. Cell Biol Toxicol. 2003 Oct;19(5):285-98 [PMID: 14703116]
  2. Cancer Res. 1985 Jan;45(1):32-9 [PMID: 3917372]
  3. Cancer Res. 2007 Feb 1;67(3):1030-7 [PMID: 17283135]
  4. Cancer Res. 2012 Jan 1;72(1):304-14 [PMID: 22084398]
  5. Cancer Res. 2006 Oct 1;66(19):9339-44 [PMID: 16990346]
  6. Cancer Res. 2007 May 15;67(10):4827-33 [PMID: 17510412]
  7. Mol Cancer Ther. 2013 Jul;12(7):1299-309 [PMID: 23657945]
  8. Nat Rev Cancer. 2005 Apr;5(4):275-84 [PMID: 15803154]
  9. Cell Death Dis. 2014 Apr 24;5:e1191 [PMID: 24763048]
  10. Annu Rev Med. 2002;53:615-27 [PMID: 11818492]
  11. Cancer Cell Microenviron. 2014 Nov 1;1(6):null [PMID: 25995993]
  12. Nature. 1994 Feb 17;367(6464):645-8 [PMID: 7509044]
  13. Adv Drug Deliv Rev. 2009 Jan 31;61(1):3-13 [PMID: 19135109]
  14. Nat Rev Clin Oncol. 2015 Aug;12(8):445-64 [PMID: 25850553]
  15. Drugs R D. 2015 Mar;15(1):13-20 [PMID: 25698589]
  16. Adv Cancer Res. 2014;122:1-67 [PMID: 24974178]
  17. J Pathol. 2005 Jan;205(2):275-92 [PMID: 15641020]
  18. Stem Cells. 2013 Jan;31(1):23-34 [PMID: 23132831]
  19. Cell Stem Cell. 2015 Mar 5;16(3):225-38 [PMID: 25748930]
  20. Bioorg Med Chem. 2016 Mar 1;24(5):967-75 [PMID: 26822567]
  21. Cell Stem Cell. 2011 Feb 4;8(2):136-47 [PMID: 21295271]
  22. J Lab Clin Med. 2003 Jul;142(1):46-51 [PMID: 12878985]
  23. Cancer Lett. 2017 Jun 28;396:103-109 [PMID: 28300634]
  24. BMC Cancer. 2015 May 13;15:401 [PMID: 25967547]
  25. Anticancer Res. 2003 May-Jun;23(3B):2425-33 [PMID: 12894524]
  26. Anticancer Agents Med Chem. 2016;16(1):38-58 [PMID: 26179271]
  27. Cancer Res. 2003 Sep 15;63(18):5821-8 [PMID: 14522905]
  28. Br J Rheumatol. 1997 Aug;36(8):870-7 [PMID: 9291856]
  29. Cancers (Basel). 2010 May 17;2(2):859-84 [PMID: 24281098]
  30. Oncogene. 2006 Aug 7;25(34):4633-46 [PMID: 16892078]
  31. Epigenomics. 2009 Oct;1(1):63-79 [PMID: 22122637]
  32. J Exp Med. 1996 Apr 1;183(4):1797-806 [PMID: 8666936]
  33. Nature. 2001 Nov 1;414(6859):105-11 [PMID: 11689955]
  34. Mitochondrion. 2016 Jan;26:86-93 [PMID: 26702582]
  35. Stem Cell Res Ther. 2015 Oct 15;6:198 [PMID: 26472041]
  36. Stem Cells. 2005 Mar;23 (3):299-305 [PMID: 15749924]
  37. Oncotarget. 2014 Oct 15;5(19):9118-32 [PMID: 25193854]
  38. Drugs. 1984 May;27(5):378-424 [PMID: 6426923]
  39. Nature. 2009 Apr 9;458(7239):780-3 [PMID: 19194462]
  40. Cell Death Differ. 2014 Jan;21(1):124-35 [PMID: 24096870]
  41. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8 [PMID: 12629218]
  42. Cancer Res. 2014 May 1;74(9):2520-32 [PMID: 24599128]
  43. Cell Death Dis. 2017 Jun 22;8(6):e2887 [PMID: 28640251]
  44. Mol Cancer. 2017 Feb 23;16(1):43 [PMID: 28228161]
  45. Dev Neurosci. 2004 Mar-Aug;26(2-4):148-65 [PMID: 15711057]

MeSH Term

Adenosine Triphosphate
Animals
Auranofin
Biomarkers, Tumor
Carcinogenesis
Cell Line, Tumor
Deoxyglucose
Doxorubicin
Drug Synergism
Glycolysis
Hexokinase
Humans
Mice
Neoplastic Stem Cells
Reactive Oxygen Species
Side-Population Cells
Spheroids, Cellular
Xenograft Model Antitumor Assays

Chemicals

Biomarkers, Tumor
Reactive Oxygen Species
Auranofin
Doxorubicin
Adenosine Triphosphate
Deoxyglucose
Hexokinase

Word Cloud

Created with Highcharts 10.0.0cellsAFSPcancerdrugdepletionstem-likeROSglycolysisadriamycinside-populationimportantroleABCG2tumorstudycellvitrovivoATPinhibitionCancerrepresentssub-populationresistanceduehighexpressionATP-bindingcassettetransporterinvolvedexportAuranofinclinicalgoldcomplexusedtreatmentrheumatoidarthritisreportedinducingantiproliferationHoweverwhethercanimpactremainsunclearshowedcauseddownregulationstemmarkersimpairedabilityformcoloniesincidencedeveloptumorslungReactiveoxygenspeciesmediatingAF-inducedreversedantioxidantNACrevealedalsocausecellularmightimpairfunctionpumpleadingincreasedaccumulationwithinthusenhancinganticanceractivitychemotherapeuticagentsSynergisticeffectdemonstratedSimultaneousincreasenovelstrategyeliminateCombinationseemspromisingenhancetherapeuticeffectivenessEliminationauranofinmodulation

Similar Articles

Cited By