Biofilm Formation and Motility Are Promoted by Cj0588-Directed Methylation of rRNA in .

Agnieszka Sałamaszyńska-Guz, Simon Rose, Claus A Lykkebo, Bartłomiej Taciak, Paweł Bącal, Tomasz Uśpieński, Stephen Douthwaite
Author Information
  1. Agnieszka Sałamaszyńska-Guz: Division of Microbiology, Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
  2. Simon Rose: Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
  3. Claus A Lykkebo: Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
  4. Bartłomiej Taciak: Division of Physiology, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
  5. Paweł Bącal: Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
  6. Tomasz Uśpieński: Division of Microbiology, Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
  7. Stephen Douthwaite: Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.

Abstract

Numerous bacterial pathogens express an ortholog of the enzyme TlyA, which is an rRNA 2'--methyltransferase associated with resistance to cyclic peptide antibiotics such as capreomycin. Several other virulence traits have also been attributed to TlyA, and these appear to be unrelated to its methyltransferase activity. The bacterial pathogen possesses the TlyA homolog Cj0588, which has been shown to contribute to virulence. Here, we investigate the mechanism of Cj0588 action and demonstrate that it is a type I homolog of TlyA that 2'--methylates 23S rRNA nucleotide C1920. This same specific function is retained by Cj0588 both and also when expressed in . Deletion of the gene in or substitution with alanine of K, D, or K in the catalytic center of the enzyme cause complete loss of 2'--methylation activity. Cofactor interactions remain unchanged and binding affinity to the ribosomal substrate is only slightly reduced, indicating that the inactivated proteins are folded correctly. The substitution mutations thus dissociate the 2'--methylation function of Cj0588/TlyA from any other putative roles that the protein might play. strains expressing catalytically inactive versions of Cj0588 have the same phenotype as -null mutants, and show altered tolerance to capreomycin due to perturbed ribosomal subunit association, reduced motility and impaired ability to form biofilms. These functions are reestablished when methyltransferase activity is restored and we conclude that the contribution of Cj0588 to virulence in is a consequence of the enzyme's ability to methylate its rRNA.

Keywords

References

  1. Microbiology. 2006 Feb;152(Pt 2):387-96 [PMID: 16436427]
  2. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  3. Antimicrob Agents Chemother. 2005 Feb;49(2):571-7 [PMID: 15673735]
  4. Nucleic Acids Res. 2003 Aug 15;31(16):4738-46 [PMID: 12907714]
  5. Gene. 1993 Sep 30;132(1):131-5 [PMID: 8406035]
  6. RNA. 2011 Feb;17(2):251-62 [PMID: 21159796]
  7. Microbiology. 1998 May;144 ( Pt 5):1205-11 [PMID: 9611795]
  8. J Med Microbiol. 2002 Jun;51(6):495-502 [PMID: 12018657]
  9. Infect Immun. 2001 Mar;69(3):1697-703 [PMID: 11179345]
  10. Nucleic Acids Res. 2011 Nov;39(21):9368-75 [PMID: 21824914]
  11. PLoS One. 2015 Mar 24;10(3):e0121680 [PMID: 25803828]
  12. Mol Cell. 2000 Aug;6(2):349-60 [PMID: 10983982]
  13. Mol Microbiol. 2012 Sep;85(6):1194-203 [PMID: 22779429]
  14. IUBMB Life. 2000 Jul;50(1):33-7 [PMID: 11087118]
  15. MBio. 2017 May 9;8(3):null [PMID: 28487428]
  16. J Mol Biol. 2016 May 22;428(10 Pt B):2146-64 [PMID: 26880335]
  17. BMC Struct Biol. 2011 Mar 28;11:16 [PMID: 21443791]
  18. Trends Microbiol. 2007 Oct;15(10):456-61 [PMID: 17920274]
  19. J Biol Chem. 2002 Mar 15;277(11):8835-40 [PMID: 11779873]
  20. Curr Microbiol. 2013 Jul;67(1):61-8 [PMID: 23417025]
  21. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  22. Food Microbiol. 2009 Feb;26(1):44-51 [PMID: 19028304]
  23. Appl Environ Microbiol. 2007 Mar;73(6):1908-13 [PMID: 17259368]
  24. Appl Environ Microbiol. 2010 Apr;76(7):2122-8 [PMID: 20139307]
  25. Crit Rev Biochem Mol Biol. 2009 Nov-Dec;44(6):393-433 [PMID: 19929179]
  26. PLoS One. 2014 Aug 28;9(8):e106063 [PMID: 25166748]
  27. Microbiology. 2010 Oct;156(Pt 10):3079-84 [PMID: 20616103]
  28. Biochem Biophys Res Commun. 2014 Jun 6;448(3):298-302 [PMID: 24796671]
  29. Biochimie. 1995;77(1-2):22-9 [PMID: 7599273]
  30. Nucleic Acids Res. 2012 Nov 1;40(20):10507-20 [PMID: 22923526]
  31. Int J Environ Res Public Health. 2013 Nov 26;10(12):6292-304 [PMID: 24287853]
  32. Infect Immun. 1994 Jun;62(6):2244-8 [PMID: 8188345]
  33. Science. 2001 May 4;292(5518):883-96 [PMID: 11283358]
  34. Nucleic Acids Res. 2010 Mar;38(4):1341-52 [PMID: 19965768]
  35. J Biol Chem. 2017 Feb 3;292(5):1977-1987 [PMID: 28031456]
  36. J Mol Biol. 2006 Jun 9;359(3):777-86 [PMID: 16678201]
  37. Curr Microbiol. 2013 Dec;67(6):696-702 [PMID: 23884593]
  38. Biochemistry. 1998 Nov 10;37(45):15951-7 [PMID: 9843401]
  39. Nat Rev Microbiol. 2007 Sep;5(9):665-79 [PMID: 17703225]
  40. RNA. 2008 Oct;14(10):2223-33 [PMID: 18755836]
  41. J Biol Chem. 2002 Nov 1;277(44):41978-86 [PMID: 12181314]
  42. Front Microbiol. 2015 Jul 13;6:709 [PMID: 26217332]
  43. Nat Struct Mol Biol. 2010 Mar;17(3):289-93 [PMID: 20154709]
  44. Mol Cell. 2006 Jul 21;23(2):173-82 [PMID: 16857584]
  45. Food Microbiol. 2015 Jun;48:99-108 [PMID: 25790997]
  46. Curr Microbiol. 2008 Jun;56(6):592-6 [PMID: 18389311]
  47. Infect Immun. 2012 Jul;80(7):2361-70 [PMID: 22508861]
  48. RNA. 2008 Oct;14(10):2234-44 [PMID: 18755835]
  49. RNA. 2004 Jun;10(6):907-13 [PMID: 15146074]
  50. J Mol Biol. 1989 Oct 20;209(4):655-65 [PMID: 2685326]
  51. J Bacteriol. 2006 Jun;188(12):4312-20 [PMID: 16740937]
  52. Methods Enzymol. 2007;425:3-20 [PMID: 17673077]
  53. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  54. Gene. 2003 Jan 2;302(1-2):129-38 [PMID: 12527203]
  55. J Mol Biol. 1999 Mar 26;287(2):201-9 [PMID: 10080885]
  56. J Mol Biol. 1993 Dec 5;234(3):779-815 [PMID: 8254673]

MeSH Term

Amino Acid Substitution
Biofilms
Campylobacter jejuni
Escherichia coli
Gene Deletion
Gene Expression
Locomotion
Methylation
RNA, Ribosomal, 23S
Recombinant Proteins
Virulence Factors
tRNA Methyltransferases

Chemicals

RNA, Ribosomal, 23S
Recombinant Proteins
Virulence Factors
tRNA Methyltransferases

Word Cloud

Created with Highcharts 10.0.0TlyACj0588rRNAvirulencebacterialcapreomycinactivityenzymeresistancealsomethyltransferasehomologfunctionsubstitutionK2'--methylationribosomalreducedmotilityabilitybiofilmsNumerouspathogensexpressortholog2'--methyltransferaseassociatedcyclicpeptideantibioticsSeveraltraitsattributedappearunrelatedpathogenpossessesshowncontributeinvestigatemechanismactiondemonstratetype2'--methylates23SnucleotideC1920specificretainedexpressedDeletiongenealanineDcatalyticcentercausecompletelossCofactorinteractionsremainunchangedbindingaffinitysubstrateslightlyindicatinginactivatedproteinsfoldedcorrectlymutationsthusdissociateCj0588/TlyAputativerolesproteinmightplaystrainsexpressingcatalyticallyinactiveversionsphenotype-nullmutantsshowalteredtolerancedueperturbedsubunitassociationimpairedformfunctionsreestablishedrestoredconcludecontributionconsequenceenzyme'smethylateBiofilmFormationMotilityPromotedCj0588-DirectedMethylation2′-O-methyltransferase

Similar Articles

Cited By