Developmental evolution of the forebrain in cavefish, from natural variations in neuropeptides to behavior.

Alexandre Alié, Lucie Devos, Jorge Torres-Paz, Lise Prunier, Fanny Boulet, Maryline Blin, Yannick Elipot, Sylvie Retaux
Author Information
  1. Alexandre Alié: Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France.
  2. Lucie Devos: Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France.
  3. Jorge Torres-Paz: Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France.
  4. Lise Prunier: Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France.
  5. Fanny Boulet: Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France.
  6. Maryline Blin: Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France.
  7. Yannick Elipot: Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France.
  8. Sylvie Retaux: Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette, France. ORCID

Abstract

The fish comes in two forms: the normal surface-dwelling and the blind depigmented cave-adapted morphs. Comparing the development of their basal forebrain, we found quantitative differences in numbers of cells in specific clusters for six out of nine studied neuropeptidergic cell types. Investigating the origins of these differences, we showed that early Shh and Fgf signaling impact on the development of NPY and Hypocretin clusters, via effect on Lhx7 and Lhx9 transcription factors, respectively. Finally, we demonstrated that such neurodevelopmental evolution underlies behavioral evolution, linking a higher number of Hypocretin cells with hyperactivity in cavefish. Early embryonic modifications in signaling/patterning at neural plate stage therefore impact neuronal development and later larval behavior, bridging developmental evolution of a neuronal system and the adaptive behavior it governs. This work uncovers novel variations underlying the evolution and adaptation of cavefish to their extreme environment.

Keywords

References

  1. Neuron. 2002 Jul 18;35(2):255-65 [PMID: 12160744]
  2. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9718-23 [PMID: 20439726]
  3. J Exp Biol. 2017 Jan 15;220(Pt 2):284-293 [PMID: 28100806]
  4. Development. 2004 Nov;131(22):5639-47 [PMID: 15509764]
  5. Annu Rev Physiol. 2011;73:183-211 [PMID: 21314433]
  6. Front Behav Neurosci. 2013 Apr 18;7:28 [PMID: 23616752]
  7. Genes Dev. 2013 Mar 1;27(5):565-78 [PMID: 23431030]
  8. Nature. 2004 Oct 14;431(7010):844-7 [PMID: 15483612]
  9. Neuron. 2001 May;30(2):345-54 [PMID: 11394998]
  10. Development. 2002 Jul;129(13):3055-65 [PMID: 12070082]
  11. Dev Biol. 2005 Dec 1;288(1):259-75 [PMID: 16256099]
  12. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  13. Peptides. 2006 Aug;27(8):1981-6 [PMID: 16762453]
  14. Gen Comp Endocrinol. 2013 Mar 1;183:44-52 [PMID: 23305930]
  15. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1861-70 [PMID: 25825735]
  16. Dev Biol. 2008 Aug 15;320(2):366-77 [PMID: 18597750]
  17. Ann N Y Acad Sci. 2010 Jul;1200:149-61 [PMID: 20633143]
  18. Nat Commun. 2014 Apr 10;5:3647 [PMID: 24717983]
  19. Zebrafish. 2011 Dec;8(4):155-65 [PMID: 22181659]
  20. Nature. 1996 Oct 3;383(6599):407-13 [PMID: 8837770]
  21. Development. 2013 Jan 15;140(2):372-84 [PMID: 23250211]
  22. Wiley Interdiscip Rev Dev Biol. 2015 Sep-Oct;4(5):445-68 [PMID: 25820448]
  23. Development. 2016 Jul 15;143(14 ):2651-63 [PMID: 27317806]
  24. Brain Behav Evol. 2012;80(4):233-43 [PMID: 22922609]
  25. PLoS One. 2013;8(1):e53553 [PMID: 23326453]
  26. Neural Dev. 2012 Jan 20;7:4 [PMID: 22264356]
  27. Eur J Pharmacol. 2011 Jun 11;660(1):53-60 [PMID: 21208603]
  28. Ann N Y Acad Sci. 2011 Mar;1220:93-105 [PMID: 21388407]
  29. Nutr Metab (Lond). 2007 Sep 01;4:18 [PMID: 17764572]
  30. Gen Comp Endocrinol. 2014 Jan 15;196:34-40 [PMID: 24287340]
  31. Curr Opin Neurobiol. 2001 Feb;11(1):27-33 [PMID: 11179869]
  32. Front Neuroanat. 2015 Mar 19;9:27 [PMID: 25852489]
  33. Curr Biol. 2013 Jan 7;23(1):1-10 [PMID: 23159600]
  34. J Comp Neurol. 2014 May 1;522(7):1542-64 [PMID: 24127437]
  35. Curr Biol. 2012 Mar 20;22(6):538-44 [PMID: 22365850]
  36. Nature. 2012 Nov 15;491(7424):357-63 [PMID: 23151578]
  37. J Comp Neurol. 1999 Nov 8;414(1):13-32 [PMID: 10494075]
  38. Zebrafish. 2013 Mar;10(1):70-86 [PMID: 23590400]
  39. Vitam Horm. 2012;89:341-61 [PMID: 22640622]
  40. Development. 2000 Jun;127(12):2549-61 [PMID: 10821754]
  41. J Neurosci. 2006 Dec 20;26(51):13400-10 [PMID: 17182791]
  42. Dev Biol. 2004 Jul 15;271(2):322-38 [PMID: 15223337]
  43. Dev Neurobiol. 2012 Mar;72(3):218-33 [PMID: 21692189]
  44. Elife. 2018 Feb 06;7:null [PMID: 29405117]
  45. Annu Rev Neurosci. 2002;25:251-81 [PMID: 12052910]
  46. Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9668-73 [PMID: 26170297]
  47. Zebrafish. 2006;3(2):131-40 [PMID: 18248256]
  48. J Hirnforsch. 1986;27(4):441-70 [PMID: 3760554]
  49. Neuropeptides. 2012 Dec;46(6):275-83 [PMID: 23122775]
  50. Zebrafish. 2014 Aug;11(4):291-9 [PMID: 25004161]
  51. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17256-61 [PMID: 20855623]
  52. Development. 2011 Jun;138(12):2467-76 [PMID: 21610028]
  53. Syst Biol. 2003 Oct;52(5):696-704 [PMID: 14530136]
  54. Curr Biol. 2010 Sep 28;20(18):1631-6 [PMID: 20705469]
  55. Development. 2015 Mar 15;142(6):1113-24 [PMID: 25725064]
  56. BMC Biol. 2015 Feb 20;13:15 [PMID: 25761998]
  57. Front Neuroanat. 2015 Feb 12;9:2 [PMID: 25729355]
  58. Trends Endocrinol Metab. 2015 Mar;26(3):125-35 [PMID: 25662369]
  59. Nature. 1998 Feb 19;391(6669):788-92 [PMID: 9486648]
  60. Development. 2008 Oct;135(20):3401-13 [PMID: 18799544]
  61. Front Neuroanat. 2015 Jan 12;8:162 [PMID: 25628541]
  62. Evol Dev. 2008 May-Jun;10(3):265-72 [PMID: 18460088]
  63. Development. 2016 Dec 1;143(23 ):4521-4532 [PMID: 27899509]
  64. Nat Commun. 2013;4:1745 [PMID: 23612286]
  65. Development. 2007 Mar;134(5):845-55 [PMID: 17251267]
  66. Development. 2003 Sep;130(18):4337-49 [PMID: 12900450]
  67. J Neurosci. 2012 Nov 28;32(48):17211-24 [PMID: 23197713]
  68. Pharmacol Biochem Behav. 2010 Nov;97(1):84-91 [PMID: 20837046]
  69. Biol Cell. 2008 Mar;100(3):139-47 [PMID: 18271755]
  70. Curr Biol. 2011 Apr 26;21(8):671-6 [PMID: 21474315]
  71. Front Neuroanat. 2015 Apr 17;9:46 [PMID: 25941476]
  72. Sci Rep. 2015 Mar 04;5:8738 [PMID: 25736911]
  73. Dev Genes Evol. 2001 Mar;211(3):138-44 [PMID: 11455425]
  74. BMC Evol Biol. 2018 Apr 18;18(1):43 [PMID: 29665771]
  75. Nat Commun. 2013;4:2108 [PMID: 23820554]
  76. Dev Biol. 2003 Feb 1;254(1):19-35 [PMID: 12606279]
  77. Neuroreport. 2002 Feb 11;13(2):A23-7 [PMID: 11893924]
  78. Cell Rep. 2014 May 8;7(3):609-22 [PMID: 24767996]
  79. Curr Top Dev Biol. 2009;86:191-221 [PMID: 19361694]

MeSH Term

Adaptation, Biological
Animals
Behavior, Animal
Biological Evolution
Characidae
Neuropeptides
Prosencephalon

Chemicals

Neuropeptides

Word Cloud

Created with Highcharts 10.0.0evolutioncavefishbehaviordevelopmentcellsforebraindifferencesclustersimpactHypocretinneuronaldevelopmentalvariationsfishcomestwoforms:normalsurface-dwellingblinddepigmentedcave-adaptedmorphsComparingbasalfoundquantitativenumbersspecificsixninestudiedneuropeptidergiccelltypesInvestigatingoriginsshowedearlyShhFgfsignalingNPYviaeffectLhx7Lhx9transcriptionfactorsrespectivelyFinallydemonstratedneurodevelopmentalunderliesbehaviorallinkinghighernumberhyperactivityEarlyembryonicmodificationssignaling/patterningneuralplatestagethereforelaterlarvalbridgingsystemadaptivegovernsworkuncoversnovelunderlyingadaptationextremeenvironmentDevelopmentalnaturalneuropeptidesbiologyhypothalamusstem

Similar Articles

Cited By