Fetal regional brain protein signature in FASD rat model.

Katie L Davis-Anderson, Hendrik Wesseling, Lara M Siebert, Emilie R Lunde-Young, Vishal D Naik, Hanno Steen, Jayanth Ramadoss
Author Information
  1. Katie L Davis-Anderson: Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA.
  2. Hendrik Wesseling: Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA.
  3. Lara M Siebert: Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA.
  4. Emilie R Lunde-Young: Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA.
  5. Vishal D Naik: Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA.
  6. Hanno Steen: Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA.
  7. Jayanth Ramadoss: Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA. Electronic address: jramadoss@cvm.tamu.edu.

Abstract

Fetal alcohol spectrum disorders (FASD) describe neurodevelopmental deficits in children exposed to alcohol in utero. We hypothesized that gestational alcohol significantly alters fetal brain regional protein signature. Pregnant rats were binge-treated with alcohol or pair-fed and nutritionally-controlled. Mass spectrometry identified 1806, 2077, and 1456 quantifiable proteins in the fetal hippocampus, cortex, and cerebellum, respectively. A stronger effect of alcohol exposure on the hippocampal proteome was noted: over 600 hippocampal proteins were significantly (P < .05) altered, including annexin A2, nucleobindin-1, and glypican-4, regulators of cellular growth and developmental morphogenesis. In the cerebellum, cadherin-13, reticulocalbin-2, and ankyrin-2 (axonal growth regulators) were significantly (P < .05) altered; altered cortical proteins were involved in autophagy (endophilin-B1, synaptotagmin-1). Ingenuity analysis identified proteins involved in protein homeostasis, oxidative stress, mitochondrial dysfunction, and mTOR as major pathways in the cortex and hippocampus significantly (P < .05) affected by alcohol. Thus, neurodevelopmental protein changes may directly relate to FASD neuropathology.

Keywords

References

  1. J Neurosci. 2008 Feb 20;28(8):1854-64 [PMID: 18287502]
  2. Birth Defects Res A Clin Mol Teratol. 2010 Oct;88(10):827-37 [PMID: 20706995]
  3. Nat Rev Mol Cell Biol. 2005 Jun;6(6):449-61 [PMID: 15928709]
  4. Dev Neurosci. 2010 Aug;32(3):238-48 [PMID: 20689287]
  5. Alcohol Clin Exp Res. 2015 Apr;39(4):724-32 [PMID: 25833031]
  6. Nature. 2012 Oct 11;490(7419):213-8 [PMID: 22972192]
  7. Congenit Heart Dis. 2007 Jul-Aug;2(4):250-5 [PMID: 18377476]
  8. Neurobiol Dis. 2004 Dec;17(3):403-14 [PMID: 15571976]
  9. Neurotoxicol Teratol. 1999 May-Jun;21(3):285-91 [PMID: 10386832]
  10. Pediatrics. 2014 Nov;134(5):855-66 [PMID: 25349310]
  11. Alcohol Clin Exp Res. 1990 Feb;14(1):107-18 [PMID: 1689970]
  12. Biol Chem. 2016 Oct 1;397(10):1017-29 [PMID: 27467753]
  13. Pediatrics. 2016 Aug;138(2): [PMID: 27401098]
  14. Metab Brain Dis. 1994 Dec;9(4):291-322 [PMID: 7898398]
  15. Biochem Biophys Res Commun. 1992 Aug 31;187(1):375-80 [PMID: 1520323]
  16. Behav Brain Res. 1991 Jan 31;42(1):49-56 [PMID: 2029344]
  17. Science. 2000 Feb 11;287(5455):1056-60 [PMID: 10669420]
  18. Brain Sci. 2013 Apr 29;3(2):704-27 [PMID: 24027632]
  19. J Cell Biol. 2006 Jun 5;173(5):767-80 [PMID: 16754960]
  20. Alcohol Clin Exp Res. 2016 Jan;40(1):18-32 [PMID: 26727519]
  21. Dev Disabil Res Rev. 2009;15(3):209-17 [PMID: 19731391]
  22. Electrophoresis. 2010 Jan;31(3):483-96 [PMID: 20119957]
  23. Mol Cell Proteomics. 2015 Oct;14 (10 ):2814-23 [PMID: 26223766]
  24. Alcohol. 1994 Mar-Apr;11(2):147-56 [PMID: 8204201]
  25. Alcohol Clin Exp Res. 2010 Oct;34(10):1793-802 [PMID: 20626729]
  26. Alcohol Clin Exp Res. 1999 Apr;23(4):726-34 [PMID: 10235310]
  27. EBioMedicine. 2016 Oct;12 :72-85 [PMID: 27667176]
  28. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 [PMID: 24942700]
  29. Exp Biol Med (Maywood). 2005 Jun;230(6):357-65 [PMID: 15956765]
  30. Alcohol Res Health. 2011;34(1):92-8 [PMID: 23580046]
  31. Alcohol Clin Exp Res. 2014 Jul;38(7):1832-8 [PMID: 24962648]
  32. Reprod Toxicol. 2012 Dec;34(4):538-44 [PMID: 22960358]
  33. Behav Brain Res. 2016 Sep 15;311:70-80 [PMID: 27185739]
  34. Alcohol Clin Exp Res. 2002 Nov;26(11):1752-8 [PMID: 12436066]
  35. Cell Death Differ. 2009 Jul;16(7):947-55 [PMID: 19265852]
  36. J Proteomics. 2011 Nov 18;74(12):2986-94 [PMID: 21839868]
  37. MMWR Morb Mortal Wkly Rep. 2015 Sep 25;64(37):1042-6 [PMID: 26401713]
  38. Am J Physiol Heart Circ Physiol. 2012 Aug 15;303(4):H414-21 [PMID: 22730388]
  39. Birth Defects Res A Clin Mol Teratol. 2008 Apr;82(4):177-86 [PMID: 18240165]
  40. Alcohol Clin Exp Res. 2013 Mar;37(3):517-28 [PMID: 22974253]
  41. Nat Neurosci. 2003 Nov;6(11):1194-200 [PMID: 14555951]
  42. Behav Brain Res. 2015 Aug 1;289:105-17 [PMID: 25907746]
  43. Neuropsychol Rev. 2011 Jun;21(2):102-18 [PMID: 21369875]
  44. Neurobiol Learn Mem. 2015 Oct;124:52-61 [PMID: 26211874]
  45. Sci Rep. 2017 Feb 21;7:42880 [PMID: 28220836]
  46. J Proteome Res. 2011 Apr 1;10(4):1794-805 [PMID: 21254760]
  47. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  48. Alcohol. 2012 Sep;46(6):603-12 [PMID: 22572057]
  49. Alcohol Res Health. 2011;34(1):4-14 [PMID: 23580035]
  50. J Dev Behav Pediatr. 2004 Aug;25(4):228-38 [PMID: 15308923]
  51. Blood. 2004 Apr 15;103(8):3185-91 [PMID: 15070701]
  52. Alcohol. 2010 Nov-Dec;44(7-8):691-7 [PMID: 20053519]
  53. Alcohol Clin Exp Res. 1998 Apr;22(2):339-44 [PMID: 9581638]
  54. Alcohol Clin Exp Res. 2016 Oct;40(10 ):2134-2146 [PMID: 27570053]
  55. Dev Med Child Neurol. 2001 Mar;43(3):148-54 [PMID: 11263683]
  56. Alcohol Clin Exp Res. 2012 May;36(5):748-58 [PMID: 22141380]
  57. Nat Methods. 2009 May;6(5):359-62 [PMID: 19377485]
  58. Hum Brain Mapp. 2015 Jun;36(6):2318-29 [PMID: 25711175]
  59. Alcohol Clin Exp Res. 2011 Nov;35(11):1974-84 [PMID: 21649667]
  60. Neurotoxicol Teratol. 2003 Jul-Aug;25(4):447-58 [PMID: 12798962]
  61. Alcohol Res Health. 2001;25(3):159-67 [PMID: 11810953]
  62. Alcohol. 2018 Feb;66:27-33 [PMID: 29127884]
  63. Alcohol Clin Exp Res. 2007 Dec;31(12):2073-82 [PMID: 17949464]
  64. Immunol Lett. 2001 Jan 1;75(2):111-5 [PMID: 11137134]
  65. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  66. Autophagy. 2014;10(12):2099-108 [PMID: 25484085]
  67. Alcohol Alcohol. 2010 Jul-Aug;45(4):312-9 [PMID: 20543181]
  68. Reprod Toxicol. 2013 Aug;39:69-75 [PMID: 23702218]
  69. Physiol Behav. 1989 Jul;46(1):45-8 [PMID: 2813555]
  70. Exp Physiol. 2007 Sep;92 (5):933-43 [PMID: 17526556]
  71. Drug Alcohol Depend. 2002 Feb 1;65(3):263-81 [PMID: 11841898]
  72. JAMA. 2003 Dec 10;290(22):2996-9 [PMID: 14665662]
  73. Front Pediatr. 2014 Sep 03;2:93 [PMID: 25232537]
  74. Hippocampus. 1997;7(2):232-8 [PMID: 9136052]
  75. J Biophotonics. 2018 Jan 2;:null [PMID: 29292845]
  76. Neurotoxicol Teratol. 1987 May-Jun;9(3):253-8 [PMID: 3627089]

Grants

  1. K99 AA019446/NIAAA NIH HHS
  2. R00 AA019446/NIAAA NIH HHS
  3. R01 AA023520/NIAAA NIH HHS
  4. R21 AA023035/NIAAA NIH HHS

MeSH Term

Animals
Brain
Disease Models, Animal
Ethanol
Female
Fetal Alcohol Spectrum Disorders
Pregnancy
Prenatal Exposure Delayed Effects
Proteome
Rats, Sprague-Dawley

Chemicals

Proteome
Ethanol

Word Cloud

Created with Highcharts 10.0.0alcoholFASDsignificantlyproteinproteinsFetalP <05alteredneurodevelopmentalfetalbrainregionalsignatureidentifiedhippocampuscortexcerebellumhippocampalregulatorsgrowthinvolvedspectrumdisordersdescribedeficitschildrenexposeduterohypothesizedgestationalaltersPregnantratsbinge-treatedpair-fednutritionally-controlledMassspectrometry180620771456quantifiablerespectivelystrongereffectexposureproteomenoted:600includingannexinA2nucleobindin-1glypican-4cellulardevelopmentalmorphogenesiscadherin-13reticulocalbin-2ankyrin-2axonalcorticalautophagyendophilin-B1synaptotagmin-1IngenuityanalysishomeostasisoxidativestressmitochondrialdysfunctionmTORmajorpathwaysaffectedThuschangesmaydirectlyrelateneuropathologyratmodelAlcoholTeratology

Similar Articles

Cited By