Phenotypic and Genotypic Analysis of Antimicrobial Resistance among Listeria monocytogenes Isolated from Australian Food Production Chains.

Annaleise Wilson, Jessica Gray, P Scott Chandry, Edward M Fox
Author Information
  1. Annaleise Wilson: CSIRO Agriculture and Food, Werribee, VIC 3030, Australia. alw036@student.usc.edu.au.
  2. Jessica Gray: CSIRO Agriculture and Food, Werribee, VIC 3030, Australia. Jess.gray@csiro.au.
  3. P Scott Chandry: CSIRO Agriculture and Food, Werribee, VIC 3030, Australia. scott.chandry@csiro.au.
  4. Edward M Fox: CSIRO Agriculture and Food, Werribee, VIC 3030, Australia. Edward.fox@csiro.au.

Abstract

The current global crisis of antimicrobial resistance (AMR) among important human bacterial pathogens has been amplified by an increased resistance prevalence. In recent years, a number of studies have reported higher resistance levels among isolates, which may have implications for treatment of listeriosis infection where resistance to key treatment antimicrobials is noted. This study examined the genotypic and phenotypic AMR patterns of 100 isolates originating from food production supplies in Australia and examined this in the context of global population trends. Low levels of resistance were noted to ciprofloxacin (2%) and erythromycin (1%); however, no resistance was observed to penicillin G or tetracycline. Resistance to ciprofloxacin was associated with a mutation in the gene in one isolate; however, no genetic basis for resistance in the other isolate was identified. Resistance to erythromycin was correlated with the presence of the resistance gene. Both resistant isolates belonged to clonal complex 1 (CC1), and analysis of these in the context of global CC1 isolates suggested that they were more similar to isolates from India rather than the other CC1 isolates included in this study. This study provides baseline AMR data for isolated in Australia, identifies key genetic markers underlying this resistance, and highlights the need for global molecular surveillance of resistance patterns to maintain control over the potential dissemination of AMR isolates.

Keywords

References

  1. Pharmacotherapy. 1990;10(4):301-4 [PMID: 2117750]
  2. Antimicrob Agents Chemother. 1999 Sep;43(9):2103-8 [PMID: 10471548]
  3. J Appl Microbiol. 2001 Apr;90(4):517-22 [PMID: 11309061]
  4. Zoonoses Public Health. 2015 Feb;62(1):11-7 [PMID: 24506835]
  5. Antimicrob Agents Chemother. 2010 Jun;54(6):2728-31 [PMID: 20385859]
  6. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  7. Int J Food Microbiol. 2003 Jun 25;83(3):325-30 [PMID: 12745237]
  8. Eur J Ophthalmol. 2017 Mar 10;27(2):115-121 [PMID: 27791252]
  9. Clin Microbiol Rev. 1991 Apr;4(2):169-83 [PMID: 1906370]
  10. Infect Immun. 1984 Apr;44(1):157-61 [PMID: 6323313]
  11. Appl Environ Microbiol. 1996 Jan;62(1):269-70 [PMID: 8572704]
  12. Appl Environ Microbiol. 2011 Apr;77(8):2788-90 [PMID: 21357436]
  13. Foodborne Pathog Dis. 2016 May;13(5):262-8 [PMID: 27058266]
  14. J Infect Dev Ctries. 2014 Apr 15;8(4):416-23 [PMID: 24727506]
  15. PLoS One. 2016 Mar 08;11(3):e0151117 [PMID: 26953695]
  16. Microb Drug Resist. 2009 Mar;15(1):27-32 [PMID: 19216646]
  17. Emerg Infect Dis. 2011 Jan;17(1):7-15 [PMID: 21192848]
  18. Lancet Infect Dis. 2017 May;17 (5):510-519 [PMID: 28139432]
  19. J Appl Microbiol. 2016 Feb;120(2):251-65 [PMID: 26509460]
  20. Rev Infect Dis. 1986 May-Jun;8(3):427-30 [PMID: 3523699]
  21. BMC Microbiol. 2015 Jul 25;15:144 [PMID: 26209099]
  22. Clin Microbiol Rev. 2001 Jul;14(3):584-640 [PMID: 11432815]
  23. Int J Food Microbiol. 2017 May 16;249:18-26 [PMID: 28271853]
  24. Appl Environ Microbiol. 2004 Feb;70(2):758-64 [PMID: 14766552]
  25. Microbiologyopen. 2014 Feb;3(1):118-27 [PMID: 24382842]
  26. Foodborne Pathog Dis. 2011 May;8(5):635-41 [PMID: 21247298]
  27. Antimicrob Agents Chemother. 1992 Feb;36(2):463-6 [PMID: 1605611]
  28. Biomed Res Int. 2014;2014:358051 [PMID: 24822197]
  29. Bioinformatics. 2015 Sep 1;31(17):2877-8 [PMID: 25913206]
  30. J Antimicrob Chemother. 2002 Jun;49(6):917-24 [PMID: 12039883]
  31. J Food Prot. 2014 Aug;77(8):1407-10 [PMID: 25198605]
  32. Curr Drug Targets. 2008 Sep;9(9):808-15 [PMID: 18781926]
  33. Front Microbiol. 2017 Apr 06;8:603 [PMID: 28428781]
  34. Clin Infect Dis. 2005 Jul 15;41 Suppl 2:S120-6 [PMID: 15942878]
  35. Foodborne Pathog Dis. 2008 Jun;5(3):253-9 [PMID: 18564907]
  36. Antimicrob Agents Chemother. 1997 May;41(5):1134-6 [PMID: 9145882]
  37. Front Microbiol. 2016 Dec 22;7:2057 [PMID: 28066377]
  38. Emerg Microbes Infect. 2016 Jun 08;5:e55 [PMID: 27273224]
  39. FEMS Immunol Med Microbiol. 2008 Jul;53(2):151-65 [PMID: 18462388]
  40. Int J Food Microbiol. 2009 Jan 15;128(3):497-500 [PMID: 19012982]
  41. Lett Appl Microbiol. 2015 Jun;60(6):609-14 [PMID: 25808878]
  42. Korean J Food Sci Anim Resour. 2015;35(5):669-73 [PMID: 26761896]
  43. Nat Rev Microbiol. 2015 Jan;13(1):42-51 [PMID: 25435309]
  44. Lett Appl Microbiol. 2016 Jan;62(1):23-9 [PMID: 26518475]
  45. Appl Environ Microbiol. 2011 Sep;77(18):6559-69 [PMID: 21764947]
  46. PLoS One. 2014 Sep 04;9(9):e106340 [PMID: 25188450]
  47. Clin Infect Dis. 1999 Nov;29(5):1340-1 [PMID: 10524996]
  48. Foodborne Pathog Dis. 2017 Mar;14 (3):132-140 [PMID: 28085487]
  49. J Clin Microbiol. 2004 Aug;42(8):3819-22 [PMID: 15297538]
  50. Infect Immun. 1997 Jul;65(7):2707-16 [PMID: 9199440]
  51. Sci Total Environ. 2009 Jun 15;407(13):4022-7 [PMID: 19427675]
  52. J Food Prot. 2004 Nov;67(11):2500-14 [PMID: 15553634]
  53. PLoS Pathog. 2008 Sep 05;4(9):e1000146 [PMID: 18773117]
  54. Clin Microbiol Infect. 2000 Oct;6(10):525-35 [PMID: 11168046]
  55. BMC Microbiol. 2015 May 12;15:100 [PMID: 25963134]
  56. Int J Food Microbiol. 2010 Dec 15;144(2):310-6 [PMID: 21074885]

Word Cloud

Created with Highcharts 10.0.0resistanceisolatesglobalAMRamongstudyAustraliaResistanceCC1antimicrobiallevelstreatmentkeynotedexaminedpatternscontextciprofloxacinerythromycinhowevergeneisolategeneticListeriamonocytogenescurrentcrisisimportanthumanbacterialpathogensamplifiedincreasedprevalencerecentyearsnumberstudiesreportedhighermayimplicationslisteriosisinfectionantimicrobialsgenotypicphenotypic100originatingfoodproductionsuppliespopulationtrendsLow2%1%observedpenicillinGtetracyclineassociatedmutationonebasisidentifiedcorrelatedpresenceresistantbelongedclonalcomplex1analysissuggestedsimilarIndiaratherincludedprovidesbaselinedataisolatedidentifiesmarkersunderlyinghighlightsneedmolecularsurveillancemaintaincontrolpotentialdisseminationPhenotypicGenotypicAnalysisAntimicrobialIsolatedAustralianFoodProductionChainsermBfepRsingle-nucleotidepolymorphismsubtyping

Similar Articles

Cited By