Design of Adjacent Transcriptional Regions to Tune Gene Expression and Facilitate Circuit Construction.

Fuqing Wu, Qi Zhang, Xiao Wang
Author Information
  1. Fuqing Wu: School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
  2. Qi Zhang: School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
  3. Xiao Wang: School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA. Electronic address: xiaowang@asu.edu.

Abstract

Polycistronic architecture is common for synthetic gene circuits, however, it remains unknown how expression of one gene is affected by the presence of other genes/noncoding regions in the operon, termed adjacent transcriptional regions (ATR). Here, we constructed synthetic operons with a reporter gene flanked by different ATRs, and we found that ATRs with high GC content, small size, and low folding energy lead to high gene expression. Based on these results, we built a model of gene expression and generated a metric that takes into account ATRs. We used the metric to design and construct logic gates with low basal expression and high sensitivity and nonlinearity. Furthermore, we rationally designed synthetic 5'ATRs with different GC content and sizes to tune protein expression levels over a 300-fold range and used these to build synthetic toggle switches with varying basal expression and degrees of bistability. Our comprehensive model and gene expression metric could facilitate the future engineering of more complex synthetic gene circuits.

Keywords

References

  1. Mol Syst Biol. 2016 Jan 14;12(1):854 [PMID: 26769567]
  2. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50 [PMID: 20133581]
  3. Mol Syst Biol. 2014 Jun 21;10:731 [PMID: 24952589]
  4. Annu Rev Genet. 2008;42:211-33 [PMID: 18605898]
  5. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  6. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11284-9 [PMID: 23798422]
  7. PLoS One. 2014 Nov 18;9(11):e113380 [PMID: 25405875]
  8. J Theor Biol. 2008 Jun 21;252(4):587-92 [PMID: 18384817]
  9. Science. 2015 Aug 28;349(6251):986-9 [PMID: 26315440]
  10. PLoS One. 2017 Apr 19;12(4):e0176013 [PMID: 28422998]
  11. Nucleic Acids Res. 2014 Apr;42(8):4813-22 [PMID: 24561808]
  12. Nucleic Acids Res. 1999 Apr 1;27(7):1578-84 [PMID: 10075987]
  13. Genes Dev. 1992 Jan;6(1):135-48 [PMID: 1370426]
  14. J Comput Chem. 2011 Jan 15;32(1):170-3 [PMID: 20645303]
  15. Cell. 2016 Apr 21;165(3):620-30 [PMID: 27104979]
  16. Chem Biol. 2014 Dec 18;21(12):1629-38 [PMID: 25455858]
  17. Nature. 2014 May 1;509(7498):S13 [PMID: 24784423]
  18. Cell. 2016 May 19;165(5):1255-1266 [PMID: 27160350]
  19. Nat Rev Microbiol. 2016 Mar;14(3):135-49 [PMID: 26876034]
  20. Science. 2010 Jul 30;329(5991):533-8 [PMID: 20671182]
  21. J Am Chem Soc. 2016 Jun 8;138(22):7016-23 [PMID: 27199273]
  22. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7668-72 [PMID: 2217199]
  23. Mol Syst Biol. 2015 Jan 12;11(1):781 [PMID: 25583150]
  24. Front Microbiol. 2014 Aug 26;5:451 [PMID: 25206353]
  25. Cell. 2014 Nov 6;159(4):940-54 [PMID: 25417167]
  26. Nat Biotechnol. 2014 Dec;32(12):1276-81 [PMID: 25402616]
  27. Methods Enzymol. 1995;259:242-61 [PMID: 8538457]
  28. Appl Environ Microbiol. 2016 Jun 13;82(13):3698-3710 [PMID: 27084023]
  29. J Biol Eng. 2017 Aug 21;11:25 [PMID: 28835771]
  30. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16817-22 [PMID: 22927382]
  31. Science. 2009 Apr 10;324(5924):255-8 [PMID: 19359587]
  32. Genome Res. 2003 Feb;13(2):216-23 [PMID: 12566399]
  33. FEMS Microbiol Rev. 2015 May;39(3):331-49 [PMID: 26009640]
  34. Biochemistry. 1998 Oct 20;37(42):14719-35 [PMID: 9778347]
  35. Nat Methods. 2014 May;11(5):508-20 [PMID: 24781324]
  36. ACS Synth Biol. 2014 Jun 20;3(6):363-71 [PMID: 24283192]
  37. Nature. 2000 Jan 20;403(6767):339-42 [PMID: 10659857]
  38. Nat Methods. 2012 Nov;9(11):1077-80 [PMID: 23042452]
  39. J Mol Biol. 2016 Feb 27;428(5 Pt B):893-915 [PMID: 26908220]
  40. Nat Methods. 2013 Apr;10(4):354-60 [PMID: 23474465]
  41. Nat Rev Microbiol. 2013 Jan;11(1):45-57 [PMID: 23241849]
  42. Science. 2016 Apr 1;352(6281):aac7341 [PMID: 27034378]
  43. Nat Methods. 2014 Dec;11(12):1261-6 [PMID: 25344638]
  44. Nat Biotechnol. 2009 May;27(5):450-1 [PMID: 19430449]
  45. Sci Prog. 2015;98(Pt 3):244-52 [PMID: 26601339]
  46. Nat Biotechnol. 2009 Oct;27(10):946-50 [PMID: 19801975]
  47. Science. 2011 Oct 14;334(6053):238-41 [PMID: 21998392]
  48. Cell Syst. 2017 Jul 26;5(1):11-24.e12 [PMID: 28734826]
  49. Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10626-31 [PMID: 21670266]
  50. Elife. 2017 Apr 11;6: [PMID: 28397688]
  51. Nature. 2014 Apr 17;508(7496):387-91 [PMID: 24717442]
  52. Nature. 2016 Aug 4;536(7614):81-85 [PMID: 27437587]
  53. Mol Cell. 2016 Jul 21;63(2):329-336 [PMID: 27425413]

Grants

  1. R01 GM106081/NIGMS NIH HHS

MeSH Term

Animals
Gene Expression
Gene Expression Regulation
Gene Regulatory Networks
Genetic Engineering
Humans
Models, Genetic
Operon
Synthetic Biology
Transcription, Genetic

Word Cloud

Created with Highcharts 10.0.0geneexpressionsyntheticATRshighmetriccircuitsregionsadjacenttranscriptionaldifferentGCcontentlowmodeluseddesignbasalPolycistronicarchitecturecommonhoweverremainsunknownoneaffectedpresencegenes/noncodingoperontermedATRconstructedoperonsreporterflankedfoundsmallsizefoldingenergyleadBasedresultsbuiltgeneratedtakesaccountconstructlogicgatessensitivitynonlinearityFurthermorerationallydesigned5'ATRssizestuneproteinlevels300-foldrangebuildtoggleswitchesvaryingdegreesbistabilitycomprehensivefacilitatefutureengineeringcomplexDesignAdjacentTranscriptionalRegionsTuneGeneExpressionFacilitateCircuitConstructionregioncircuitnetworks

Similar Articles

Cited By