Dynamic simulations of many-body electrostatic self-assembly.

Eric B Lindgren, Benjamin Stamm, Yvon Maday, Elena Besley, A J Stace
Author Information
  1. Eric B Lindgren: Department of Physical and Theoretical Chemistry, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
  2. Benjamin Stamm: Centre for Computational Engineering, Mathematics Department, RWTH Aachen University, Schinkelstrasse 2, 52062 Aachen, Germany.
  3. Yvon Maday: Laboratoire Jacques-Louis Lions, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, 75005 Paris, France.
  4. Elena Besley: Department of Physical and Theoretical Chemistry, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
  5. A J Stace: Department of Physical and Theoretical Chemistry, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK anthony.stace@nottingham.ac.uk. ORCID

Abstract

Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process.This article is part of the theme issue 'Modern theoretical chemistry'.

Keywords

References

  1. J Chem Phys. 2016 Sep 28;145(12):124903 [PMID: 27782617]
  2. Nat Nanotechnol. 2011 Aug 21;6(9):580-7 [PMID: 21857686]
  3. J Chem Phys. 2007 Mar 21;126(11):114108 [PMID: 17381197]
  4. Phys Chem Chem Phys. 2008 Sep 1;10(33):5147-55 [PMID: 18701965]
  5. J Am Chem Soc. 2014 Sep 24;136(38):13348-54 [PMID: 25171262]
  6. J Am Chem Soc. 2006 Mar 22;128(11):3620-37 [PMID: 16536535]
  7. Nature. 2006 Jan 5;439(7072):55-9 [PMID: 16397494]
  8. Chemphyschem. 2016 Mar 3;17(5):618-31 [PMID: 26663488]
  9. Phys Chem Chem Phys. 2016 Feb 17;18(8):5883-95 [PMID: 26841284]
  10. J Colloid Interface Sci. 2016 May 1;469:237-241 [PMID: 26896771]
  11. J Phys Chem B. 2013 Jun 6;117(22):6733-40 [PMID: 23668620]
  12. Phys Chem Chem Phys. 2016 Jun 28;18(24):16137-51 [PMID: 27253089]
  13. Science. 2000 Mar 17;287(5460):1989-92 [PMID: 10720318]
  14. J Colloid Interface Sci. 2011 Feb 1;354(1):417-20 [PMID: 21131001]
  15. Phys Chem Chem Phys. 2014 Aug 21;16(31):16388-98 [PMID: 24736994]
  16. J Chem Phys. 2010 Jul 14;133(2):024105 [PMID: 20632746]
  17. Nat Mater. 2003 Apr;2(4):241-5 [PMID: 12690397]
  18. J Chem Phys. 2014 Feb 14;140(6):064903 [PMID: 24527936]
  19. Nano Lett. 2011 Jan 12;11(1):119-24 [PMID: 21090775]
  20. J Chem Phys. 2017 Apr 21;146(15):150901 [PMID: 28433024]
  21. J Phys Chem B. 2015 Sep 3;119(35):11673-83 [PMID: 26241704]
  22. Angew Chem Int Ed Engl. 2008;47(12):2188-207 [PMID: 18270989]
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):013307 [PMID: 23410460]
  24. Angew Chem Int Ed Engl. 2007;46(1-2):206-9 [PMID: 17136785]
  25. J Chem Phys. 2016 Nov 7;145(17):174101 [PMID: 27825212]
  26. J Chem Phys. 2014 Jul 21;141(3):034115 [PMID: 25053309]

Word Cloud

Created with Highcharts 10.0.0simulationsparticleselectrostaticself-assemblyOnecalculationsexperimentsassemblyobservedstudymany-bodyTwoexperimentalstudiesrelatingsubjectdynamiccomputerconsequenceschangingchargedielectricconstantmaterialsconcernedexploredseriesrelatespolymersubjectedtribochargingsuccessfullyreproducemanypatternsbehavioursecondexploreseventsfollowingcollisionssinglesmallclusterscomposedchargedderivedmetaloxidecompositeobservationsrecordedcoursereproducedparticularrevealsparticlepolarizabilitycaninfluenceprocessThisarticlepartthemeissue'Moderntheoreticalchemistry'Dynamic

Similar Articles

Cited By (3)