Experimental increase in baseline corticosterone level reduces oxidative damage and enhances innate immune response.

Csongor I Vágási, Laura Pătraș, Péter L Pap, Orsolya Vincze, Cosmin Mureșan, József Németh, Ádám Z Lendvai
Author Information
  1. Csongor I Vágási: Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj Napoca, Romania. ORCID
  2. Laura Pătraș: Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj Napoca, Romania.
  3. Péter L Pap: Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj Napoca, Romania.
  4. Orsolya Vincze: Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj Napoca, Romania.
  5. Cosmin Mureșan: Emergency Hospital, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania.
  6. József Németh: Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary.
  7. Ádám Z Lendvai: Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.

Abstract

Glucocorticoid (GC) hormones are significant regulators of homeostasis. The physiological effects of GCs critically depend on the time of exposure (short vs. long) as well as on their circulating levels (baseline vs. stress-induced). Previous experiments, in which chronic and high elevation of GC levels was induced, indicate that GCs impair both the activity of the immune system and the oxidative balance. Nonetheless, our knowledge on how mildly elevated GC levels, a situation much more common in nature, might influence homeostasis is limited. Therefore, we studied whether an increase in GC level within the baseline range suppresses or enhances condition (body mass, hematocrit and coccidian infestation) and physiological state (humoral innate immune system activity and oxidative balance). We implanted captive house sparrows Passer domesticus with either 60 days release corticosterone (CORT) or control pellets. CORT-treated birds had elevated baseline CORT levels one week after the implantation, but following this CORT returned to its pre-treatment level and the experimental groups had similar CORT levels one and two months following the implantation. The mass of tail feathers grown during the initial phase of treatment was smaller in treated than in control birds. CORT implantation had a transient negative effect on body mass and hematocrit, but both of these traits resumed the pre-treatment values by one month post-treatment. CORT treatment lowered oxidative damage to lipids (malondialdehyde) and enhanced constitutive innate immunity at one week and one month post-implantation. Our findings suggest that a relatively short-term (i.e. few days) elevation of baseline CORT might have a positive and stimulatory effect on animal physiology.

Associated Data

Dryad | 10.5061/dryad.bt51481

References

  1. Gen Comp Endocrinol. 2018 Jan 15;256:99-111 [PMID: 28705731]
  2. J Neurobiol. 2005 Jan;62(1):82-91 [PMID: 15389682]
  3. J Exp Biol. 2010 Jul 1;213(Pt 13):2225-33 [PMID: 20543121]
  4. Gen Comp Endocrinol. 2005 Jan 15;140(2):126-35 [PMID: 15613275]
  5. Gen Comp Endocrinol. 2017 Nov 1;253:1-12 [PMID: 28811198]
  6. Naturwissenschaften. 2010 Oct;97(10):891-901 [PMID: 20706704]
  7. Comp Biochem Physiol A Mol Integr Physiol. 2005 Sep;142(1):65-73 [PMID: 16125989]
  8. Nutr Metab Cardiovasc Dis. 2005 Aug;15(4):316-28 [PMID: 16054557]
  9. J Exp Biol. 2006 Dec;209(Pt 24):4957-65 [PMID: 17142684]
  10. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1059-64 [PMID: 9927693]
  11. Gen Comp Endocrinol. 2015 Feb 1;212:100-5 [PMID: 25623144]
  12. PLoS One. 2008 Oct 03;3(10):e3335 [PMID: 18833330]
  13. Horm Behav. 2013 Jun;64(1):161-71 [PMID: 23583559]
  14. Ecology. 2014 Nov;95(11):3027-3034 [PMID: 25505800]
  15. Science. 2005 Apr 29;308(5722):648-52 [PMID: 15860617]
  16. Front Neurosci. 2015 Jan 19;8:456 [PMID: 25646076]
  17. Ecol Lett. 2010 Nov;13(11):1435-47 [PMID: 20849442]
  18. Gen Comp Endocrinol. 2014 Aug 1;204:203-10 [PMID: 24953456]
  19. J Exp Biol. 2011 Mar 1;214(Pt 5):821-8 [PMID: 21307069]
  20. Physiol Biochem Zool. 2015 Jul-Aug;88(4):395-405 [PMID: 26052636]
  21. Ann N Y Acad Sci. 2001 Apr;928:39-47 [PMID: 11795526]
  22. PLoS One. 2010 Dec 03;5(12):e14215 [PMID: 21151981]
  23. Biol Rev Camb Philos Soc. 2017 May;92 (2):1113-1127 [PMID: 27062218]
  24. Physiol Biochem Zool. 2015 May-Jun;88(3):345-51 [PMID: 25860832]
  25. Proc Biol Sci. 2003 Dec 22;270(1533):2599-604 [PMID: 14728783]
  26. Can J Physiol Pharmacol. 2009 Jun;87(6):440-7 [PMID: 19526038]
  27. Br Poult Sci. 2003 Sep;44(4):545-50 [PMID: 14584844]
  28. Gen Comp Endocrinol. 2006 Oct;149(1):58-65 [PMID: 16774754]
  29. Horm Behav. 2007 Jan;51(1):126-34 [PMID: 17049519]
  30. J Comp Physiol B. 2011 May;181(4):447-56 [PMID: 21416253]
  31. Ecol Evol. 2016 Feb 16;6(6):1702-11 [PMID: 26925215]
  32. Am Nat. 2008 Dec;172(6):783-96 [PMID: 18999941]
  33. J Evol Biol. 2012 Jun;25(6):1189-99 [PMID: 22530630]
  34. Horm Behav. 2009 Mar;55(3):375-89 [PMID: 19470371]
  35. Endocr Rev. 2000 Feb;21(1):55-89 [PMID: 10696570]
  36. Comp Biochem Physiol B Biochem Mol Biol. 2007 May;147(1):110-21 [PMID: 17303461]
  37. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7893-8 [PMID: 19416834]
  38. Gen Comp Endocrinol. 2006 Sep 1;148(2):132-49 [PMID: 16624311]
  39. Gen Comp Endocrinol. 2009 Jan 1;160(1):59-66 [PMID: 18996387]
  40. Physiol Biochem Zool. 2014 Sep-Oct;87(5):729-39 [PMID: 25244384]
  41. Oecologia. 2012 Sep;170(1):25-38 [PMID: 22382434]
  42. J Exp Biol. 2009 Oct;212(Pt 20):3228-35 [PMID: 19801427]
  43. Comp Biochem Physiol A Mol Integr Physiol. 2009 Jan;152(1):46-52 [PMID: 18804171]
  44. Ecol Evol. 2015 Nov 17;5(24):5745-57 [PMID: 26811750]
  45. Physiol Biochem Zool. 2010 Jan-Feb;83(1):78-86 [PMID: 19929638]
  46. J Exp Biol. 2012 Jan 15;215(Pt 2):374-83 [PMID: 22189781]
  47. Dev Comp Immunol. 2005;29(3):275-86 [PMID: 15572075]
  48. Gen Comp Endocrinol. 2009 Sep 1;163(1-2):70-6 [PMID: 19318107]
  49. Trends Ecol Evol. 2012 Aug;27(8):428-35 [PMID: 22613457]
  50. Mol Aspects Med. 2011 Jun;32(3):159-221 [PMID: 21840335]
  51. J Exp Biol. 2017 May 1;220(Pt 9):1693-1700 [PMID: 28209806]
  52. Comp Biochem Physiol B Biochem Mol Biol. 2004 Dec;139(4):737-44 [PMID: 15581806]
  53. PLoS One. 2011;6(8):e23824 [PMID: 21886826]
  54. Horm Behav. 2003 Jan;43(1):2-15 [PMID: 12614627]
  55. Proc Biol Sci. 2010 Mar 22;277(1683):905-13 [PMID: 19923129]
  56. Biogerontology. 2007 Feb;8(1):1-11 [PMID: 16823605]
  57. Comp Biochem Physiol A Mol Integr Physiol. 2009 Jul;153(3):339-44 [PMID: 19303455]
  58. Comp Biochem Physiol B Biochem Mol Biol. 2004 Dec;139(4):745-51 [PMID: 15581807]
  59. Stress. 2015;18(5):491-7 [PMID: 26365223]
  60. J Exp Biol. 2009 Jul;212(Pt 13):2085-91 [PMID: 19525435]
  61. Gen Comp Endocrinol. 2016 Jul 1;233:109-114 [PMID: 27222349]

MeSH Term

Animals
Corticosterone
Homeostasis
Immunity, Innate
Male
Oxidative Stress
Sparrows

Chemicals

Corticosterone