Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine.

Ingrid M Weiss, Christina Muth, Robert Drumm, Helmut O K Kirchner
Author Information
  1. Ingrid M Weiss: 1Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70569 Germany.
  2. Christina Muth: 2INM-Leibniz Institute for New Materials, Campus D2 2, Saarbruecken, D-66123 Germany.
  3. Robert Drumm: 2INM-Leibniz Institute for New Materials, Campus D2 2, Saarbruecken, D-66123 Germany.
  4. Helmut O K Kirchner: 2INM-Leibniz Institute for New Materials, Campus D2 2, Saarbruecken, D-66123 Germany.

Abstract

BACKGROUND: The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products.
RESULTS: Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly HO, some NH and no CO. Cysteine produces CO and little else. The reactions are described by polynomials, AA→ NH+ HO+ CO+ HS+ residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds.
CONCLUSIONS: Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.

Keywords

References

  1. Biosystems. 2008 Jan;91(1):195-200 [PMID: 17980955]
  2. Peptides. 1995;16(1):151-64 [PMID: 7716068]
  3. PLoS One. 2012;7(11):e49043 [PMID: 23145061]
  4. J Phys Chem B. 2017 Sep 14;121(36):8603-8610 [PMID: 28820260]
  5. Naturwissenschaften. 2009 Nov;96(11):1265-92 [PMID: 19760276]
  6. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7253-8 [PMID: 21482761]
  7. Nat Prod Rep. 2012 Sep;29(9):961-79 [PMID: 22751625]
  8. Archaea. 2015 Oct 04;2015:282035 [PMID: 26504428]
  9. Chem Rev. 2012 Jul 11;112(7):3641-716 [PMID: 22575049]
  10. Microb Ecol. 2012 Apr;63(3):490-5 [PMID: 22109096]

Word Cloud

Created with Highcharts 10.0.0aminoacidsdecomposition°CmassacidthermalquantitativeproductsspectrometrycysteineCOintegerpeptidebondsThermalBACKGROUND:pathwaysinstabilityunknownNewspectrometricdataallowunequivocalidentificationRESULTS:CalorimetrythermogravimetryusedfolloweightGCDNEQRH185280Endothermicheats72151kJ/molneededform1270%volatileprocessneithermeltingsublimationexceptionemitmainlyHONHCysteineproduceslittleelsereactionsdescribedpolynomialsAA→NH+HO+CO+HS+residuehalfcoefficientssolidmonomolecularresiduesrichCONCLUSIONS:Eight20standarddecomposewell-definedcharacteristictemperaturescontrastcommonlyacceptedknowledgeProductssimplenovelresultsemphasizeimpactwatercycliccondensatesputconstraintshypothesesoriginstatestabilityrange200300glycineasparticasparagineglutamicglutamineargininehistidineAminoQuantitativeanalysis

Similar Articles

Cited By