Multiresolution Consensus Clustering in Networks.

Lucas G S Jeub, Olaf Sporns, Santo Fortunato
Author Information
  1. Lucas G S Jeub: School of Informatics, Computing and Engineering, Indiana University, Indiana, United States. ljeub@iu.edu.
  2. Olaf Sporns: Department of Psychological and Brain Sciences, Indiana University, Indiana, United States.
  3. Santo Fortunato: School of Informatics, Computing and Engineering, Indiana University, Indiana, United States.

Abstract

Networks often exhibit structure at disparate scales. We propose a method for identifying community structure at different scales based on multiresolution modularity and consensus clustering. Our contribution consists of two parts. First, we propose a strategy for sampling the entire range of possible resolutions for the multiresolution modularity quality function. Our approach is directly based on the properties of modularity and, in particular, provides a natural way of avoiding the need to increase the resolution parameter by several orders of magnitude to break a few remaining small communities, necessitating the introduction of ad-hoc limits to the resolution range with standard sampling approaches. Second, we propose a hierarchical consensus clustering procedure, based on a modified modularity, that allows one to construct a hierarchical consensus structure given a set of input partitions. While here we are interested in its application to partitions sampled using multiresolution modularity, this consensus clustering procedure can be applied to the output of any clustering algorithm. As such, we see many potential applications of the individual parts of our multiresolution consensus clustering procedure in addition to using the procedure itself to identify hierarchical structure in networks.

References

  1. Neuroimage. 2017 Oct 15;160:73-83 [PMID: 27845257]
  2. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15224-9 [PMID: 17881571]
  3. Sci Adv. 2017 May 03;3(5):e1602548 [PMID: 28508065]
  4. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6 [PMID: 12060727]
  5. Annu Rev Psychol. 2016;67:613-40 [PMID: 26393868]
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016118 [PMID: 19658785]
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016110 [PMID: 16907154]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107 [PMID: 21405744]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 2):016114 [PMID: 21867264]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 2):026112 [PMID: 23005830]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036104-36104 [PMID: 23030977]
  12. PLoS Biol. 2008 Jul 1;6(7):e159 [PMID: 18597554]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110 [PMID: 18999496]
  14. PLoS One. 2012;7(2):e32210 [PMID: 22384178]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113 [PMID: 14995526]
  16. Appl Netw Sci. 2017;2(1):4 [PMID: 30533512]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046106 [PMID: 20481785]
  18. Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):36-41 [PMID: 17190818]
  19. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18144-9 [PMID: 25489096]
  20. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23 [PMID: 18216267]
  21. Algorithms. 2017 Sep;10(3): [PMID: 29046743]
  22. Sci Rep. 2012;2:336 [PMID: 22468223]
  23. Phys Rev E. 2016 Nov;94(5-1):052315 [PMID: 27967199]
  24. Phys Biol. 2011 Oct;8(5):055010 [PMID: 21832797]
  25. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E2093-101 [PMID: 25848037]

Word Cloud

Created with Highcharts 10.0.0modularityconsensusclusteringstructuremultiresolutionprocedureproposebasedhierarchicalNetworksscalespartssamplingrangeresolutionpartitionsusingoftenexhibitdisparatemethodidentifyingcommunitydifferentcontributionconsiststwoFirststrategyentirepossibleresolutionsqualityfunctionapproachdirectlypropertiesparticularprovidesnaturalwayavoidingneedincreaseparameterseveralordersmagnitudebreakremainingsmallcommunitiesnecessitatingintroductionad-hoclimitsstandardapproachesSecondmodifiedallowsoneconstructgivensetinputinterestedapplicationsampledcanappliedoutputalgorithmseemanypotentialapplicationsindividualadditionidentifynetworksMultiresolutionConsensusClustering

Similar Articles

Cited By