Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine.

Gianluca Colella, Flavio Fazioli, Michele Gallo, Annarosaria De Chiara, Gaetano Apice, Carlo Ruosi, Amelia Cimmino, Filomena de Nigris
Author Information
  1. Gianluca Colella: Division of Orthopedic Surgery, Department of Human Health, Federico II University of Naples, 80133 Naples, Italy. glc.colella@gmail.com.
  2. Flavio Fazioli: Division of Musculoskeletal Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples, Italy. F.fazioli@istitutotumori.na.it.
  3. Michele Gallo: Division of Musculoskeletal Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples, Italy. miga76@alice.it.
  4. Annarosaria De Chiara: Division of Pathology, National Cancer Institute, Pascale Foundation, 80131 Naples, Italy. Carlo.ruosi@gmail.com.
  5. Gaetano Apice: Division of Medical Oncology, National Cancer Institute, Pascale Foundation, 80131 Naples, Italy. anna.dechiara@istitutotumori.na.it.
  6. Carlo Ruosi: Division of Orthopedic Surgery, Department of Human Health, Federico II University of Naples, 80133 Naples, Italy. g.apice@istitutotumori.na.it.
  7. Amelia Cimmino: Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR), 80131 Naples, Italy. amelia.cimmino@gmail.it.
  8. Filomena de Nigris: Department of Biochemistry Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy. Filomena.denigris@unicampania.it. ORCID

Abstract

Cancer treatment is rapidly evolving toward personalized medicine, which takes into account the individual molecular and genetic variability of tumors. Sophisticated new in vitro disease models, such as three-dimensional cell cultures, may provide a tool for genetic, epigenetic, biomedical, and pharmacological research, and help determine the most promising individual treatment. Sarcomas, malignant neoplasms originating from mesenchymal cells, may have a multitude of genomic aberrations that give rise to more than 70 different histopathological subtypes. Their low incidence and high level of histopathological heterogeneity have greatly limited progress in their treatment, and trials of clinical sarcoma are less frequent than trials of other carcinomas. The main advantage of 3D cultures from tumor cells or biopsy is that they provide patient-specific models of solid tumors, and they overcome some limitations of traditional 2D monolayer cultures by reflecting cell heterogeneity, native histologic architectures, and cell-extracellular matrix interactions. Recent advances promise that these models can help bridge the gap between preclinical and clinical research by providing a relevant in vitro model of human cancer useful for drug testing and studying metastatic and dormancy mechanisms. However, additional improvements of 3D models are expected in the future, specifically the inclusion of tumor vasculature and the immune system, to enhance their full ability to capture the biological features of native tumors in high-throughput screening. Here, we summarize recent advances and future perspectives of spheroid and organoid in vitro models of rare sarcomas that can be used to investigate individual molecular biology and predict clinical responses. We also highlight how spheroid and organoid culture models could facilitate the personalization of sarcoma treatment, provide specific clinical scenarios, and discuss the relative strengths and limitations of these models.

Keywords

References

  1. Methods Mol Biol. 2018;1686:201-213 [PMID: 29030823]
  2. J Biomol Screen. 2004 Jun;9(4):273-85 [PMID: 15191644]
  3. Biology (Basel). 2014 May 30;3(2):345-67 [PMID: 24887773]
  4. Stem Cells. 2011 Mar;29(3):397-403 [PMID: 21425403]
  5. Hum Pathol. 2014 Aug;45(8):1563-71 [PMID: 24908143]
  6. Math Biosci. 2003 Feb;181(2):177-207 [PMID: 12445761]
  7. Expert Opin Ther Targets. 2011 May;15(5):609-21 [PMID: 21388336]
  8. Sci Rep. 2017 Sep 5;7(1):10428 [PMID: 28874803]
  9. J Biomech. 2014 Jun 27;47(9):1969-78 [PMID: 24300038]
  10. PLoS One. 2017 Jul 13;12 (7):e0181340 [PMID: 28704566]
  11. Nat Rev Drug Discov. 2013 Mar;12(3):217-28 [PMID: 23449307]
  12. PLoS One. 2014 Sep 23;9(9):e108283 [PMID: 25247711]
  13. Cancer Res. 2007 Apr 1;67(7):3094-105 [PMID: 17409416]
  14. BMC Cancer. 2012 Jan 13;12:15 [PMID: 22244109]
  15. Nature. 2017 Sep 7;549(7670):96-100 [PMID: 28854174]
  16. Nat Methods. 2007 Oct;4(10):855-60 [PMID: 17767164]
  17. BMC Cancer. 2015 Jul 15;15:519 [PMID: 26169261]
  18. BMC Biol. 2012 Mar 22;10:29 [PMID: 22439642]
  19. Oncotarget. 2017 Apr 21;8(33):54320-54330 [PMID: 28903344]
  20. Cancer Immunol Immunother. 2017 Jan;66(1):129-140 [PMID: 27858101]
  21. Cancer Res. 2000 Oct 15;60(20):5747-53 [PMID: 11059769]
  22. Annu Rev Biomed Eng. 2013;15:29-53 [PMID: 23642249]
  23. Ann Thorac Surg. 2014 Jul;98(1):291-6 [PMID: 24857855]
  24. Biotechnol Bioeng. 2003 Jul 20;83(2):173-80 [PMID: 12768623]
  25. Cancer Discov. 2017 May;7(5):462-477 [PMID: 28331002]
  26. Drug Discov Today. 2013 Mar;18(5-6):240-9 [PMID: 23073387]
  27. Biol Cell. 1994;81(1):77-81 [PMID: 7987245]
  28. Clin Exp Metastasis. 2002;19(2):161-8 [PMID: 11964080]
  29. J Cell Sci. 1993 Oct;106 ( Pt 2):657-62 [PMID: 8282770]
  30. BMC Cancer. 2015 Aug 08;15:579 [PMID: 26253487]
  31. J Biomol Screen. 2016 Oct;21(9):931-41 [PMID: 27233291]
  32. Cell. 2016 Jun 16;165(7):1586-1597 [PMID: 27315476]
  33. Int J Cancer. 1998 Nov 23;78(5):648-53 [PMID: 9808537]
  34. J Immunol Methods. 2015 Nov;426:1-13 [PMID: 26215372]
  35. J Bone Miner Res. 2002 Aug;17(8):1420-9 [PMID: 12162496]
  36. Cancer Res. 2003 Mar 15;63(6):1288-96 [PMID: 12649189]
  37. Biochim Biophys Acta. 2015 May;1853(5):975-86 [PMID: 25644713]
  38. PLoS One. 2011 Jan 31;6(1):e16530 [PMID: 21304978]
  39. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10304-9 [PMID: 26240353]
  40. Cancer Res. 2016 Jul 1;76(13):3732-43 [PMID: 27216179]
  41. Cell Rep. 2017 Oct 10;21(2):508-516 [PMID: 29020635]
  42. Cancer Gene Ther. 2012 Jul;19(7):508-16 [PMID: 22595795]
  43. Microvasc Res. 2003 Nov;66(3):204-12 [PMID: 14609526]
  44. Front Oncol. 2017 Sep 11;7:203 [PMID: 28955656]
  45. PLoS One. 2014 Mar 24;9(3):e92511 [PMID: 24663399]
  46. J Cell Physiol. 2013 Apr;228(4):846-52 [PMID: 23042366]
  47. BMC Cancer. 2016 Aug 02;16:581 [PMID: 27484993]
  48. Br J Cancer. 2016 Oct 25;115(9):1058-1068 [PMID: 27560552]
  49. Eur J Cancer. 2013 Feb;49(3):684-95 [PMID: 23079473]
  50. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):911-6 [PMID: 22203958]
  51. Oncogene. 2002 Jan 10;21(2):307-18 [PMID: 11803474]
  52. Oncotarget. 2017 Jun 28;8(49):85040-85053 [PMID: 29156702]
  53. Anticancer Res. 2003 Jan-Feb;23(1A):71-8 [PMID: 12680196]
  54. Oncotarget. 2016 Aug 23;7(34):54583-54595 [PMID: 27409346]
  55. J Immunol. 2011 Feb 1;186(3):1538-45 [PMID: 21191066]
  56. Br J Cancer. 2012 Mar 13;106(6):1123-33 [PMID: 22374462]
  57. Nat Genet. 2010 Aug;42(8):715-21 [PMID: 20601955]
  58. Sci Rep. 2016 Jan 11;6:19103 [PMID: 26752500]
  59. Curr Opin Genet Dev. 2014 Feb;24:68-73 [PMID: 24657539]
  60. Cancer. 2012 Nov 1;118(21):5339-48 [PMID: 22517534]
  61. Int J Cancer. 1989 Nov 15;44(5):940-7 [PMID: 2583872]
  62. Oncotarget. 2017 Jan 24;8(4):7068-7093 [PMID: 27732970]
  63. PLoS One. 2010 Nov 11;5(11):e13943 [PMID: 21085683]
  64. Cancer Lett. 2016 Apr 1;373(1):109-118 [PMID: 26806808]
  65. Future Oncol. 2014 May;10(7):1311-27 [PMID: 24947267]
  66. Nature. 2015 May 7;521(7550):43-7 [PMID: 25924068]
  67. Biotechnol Bioeng. 1999 Mar 5;62(5):562-75 [PMID: 10099565]
  68. Lab Invest. 2013 Oct;93(10):1100-14 [PMID: 23958880]
  69. Int J Cancer. 1985 Jun 15;35(6):793-8 [PMID: 2409034]
  70. Nat Commun. 2016 Sep 23;7:12852 [PMID: 27659302]
  71. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6500-5 [PMID: 23576741]
  72. Oncologist. 2010;15(6):627-35 [PMID: 20479280]
  73. Biotechnol Bioeng. 2014 Aug;111(8):1672-85 [PMID: 24615162]
  74. Immunobiology. 2003;207(5):351-9 [PMID: 14575150]
  75. Crit Rev Oncol Hematol. 2000 Nov-Dec;36(2-3):99-106 [PMID: 11033300]
  76. Drug Resist Updat. 2009 Aug-Oct;12(4-5):127-36 [PMID: 19726220]
  77. Ann Oncol. 2012 Jun;23 (6):1617-26 [PMID: 22112972]
  78. Nat Rev Cancer. 2015 May;15(5):311-6 [PMID: 25907221]
  79. Curr Protoc Cell Biol. 2008 Jun;Chapter 4:Unit 4.20 [PMID: 18551423]
  80. Int J Cancer. 2008 Aug 15;123(4):831-7 [PMID: 18537159]
  81. Cancer Res. 2008 Mar 15;68(6):1797-808 [PMID: 18339860]
  82. J Exp Clin Cancer Res. 2015 Jun 10;34:58 [PMID: 26055407]
  83. Anticancer Res. 2007 Jan-Feb;27(1A):45-53 [PMID: 17352215]
  84. Int J Cancer. 2006 Aug 15;119(4):839-46 [PMID: 16557578]
  85. Nat Cell Biol. 2016 Mar;18(3):246-54 [PMID: 26911908]
  86. Proteomics. 2013 Aug;13(15):2351-60 [PMID: 23712969]
  87. J Bone Oncol. 2016 Jul 21;5(3):112-116 [PMID: 27761369]
  88. Methods Mol Med. 2007;140:141-51 [PMID: 18085207]
  89. J Biol Inorg Chem. 2016 Dec;21(8):1009-1020 [PMID: 27696106]
  90. Exp Cell Res. 2002 Mar 10;274(1):56-67 [PMID: 11855857]
  91. Nat Med. 2015 Nov;21(11):1318-25 [PMID: 26479923]
  92. N Engl J Med. 2012 Mar 8;366(10 ):883-892 [PMID: 22397650]
  93. Biomed Microdevices. 2007 Jun;9(3):315-23 [PMID: 17203380]
  94. Lancet Oncol. 2006 Feb;7(2):132-40 [PMID: 16455477]
  95. Pediatr Blood Cancer. 2012 May;58(5):729-35 [PMID: 21630428]
  96. Adv Drug Deliv Rev. 2014 Dec 15;79-80:155-71 [PMID: 25109853]
  97. Nat Protoc. 2009;4(3):309-24 [PMID: 19214182]
  98. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14484-9 [PMID: 20660740]
  99. Biotechnol Bioeng. 2009 Jul 1;103(4):655-63 [PMID: 19472329]
  100. BMC Cancer. 2013 May 02;13:221 [PMID: 23638973]
  101. Cancer Lett. 1998 Sep 11;131(1):29-34 [PMID: 9839617]
  102. Expert Opin Drug Discov. 2015 Mar;10(3):257-68 [PMID: 25662589]
  103. Methods Mol Biol. 2016;1502:203-11 [PMID: 27115504]
  104. J Histochem Cytochem. 2000 Apr;48(4):509-22 [PMID: 10727293]
  105. Adv Healthc Mater. 2015 Jul 15;4(10):1426-50 [PMID: 25820344]
  106. Nat Commun. 2016 Jun 22;7:11987 [PMID: 27329820]
  107. Cancer Cell. 2012 Mar 20;21(3):309-22 [PMID: 22439926]
  108. Exp Cell Res. 2017 Nov 15;360(2):138-145 [PMID: 28867479]

MeSH Term

Animals
Humans
Models, Biological
Precision Medicine
Sarcoma
Spheroids, Cellular
Tumor Cells, Cultured
Tumor Microenvironment

Word Cloud

Created with Highcharts 10.0.0modelstreatmentclinicalmedicineindividualtumorsvitroculturesprovidetumorpersonalizedmoleculargeneticcellmayresearchhelpcellshistopathologicalheterogeneitytrialssarcoma3DlimitationsnativeadvancescanfuturespheroidorganoidsarcomasCancerrapidlyevolvingtowardtakesaccountvariabilitySophisticatednewdiseasethree-dimensionaltoolepigeneticbiomedicalpharmacologicaldeterminepromisingSarcomasmalignantneoplasmsoriginatingmesenchymalmultitudegenomicaberrationsgiverise70differentsubtypeslowincidencehighlevelgreatlylimitedprogresslessfrequentcarcinomasmainadvantagebiopsypatient-specificsolidovercometraditional2Dmonolayerreflectinghistologicarchitecturescell-extracellularmatrixinteractionsRecentpromisebridgegappreclinicalprovidingrelevantmodelhumancancerusefuldrugtestingstudyingmetastaticdormancymechanismsHoweveradditionalimprovementsexpectedspecificallyinclusionvasculatureimmunesystemenhancefullabilitycapturebiologicalfeatureshigh-throughputscreeningsummarizerecentperspectivesrareusedinvestigatebiologypredictresponsesalsohighlightculturefacilitatepersonalizationspecificscenariosdiscussrelativestrengthsSarcomaSpheroidsOrganoids-PromisingToolsEraPersonalizedMedicineprecisionspheroidsmicroenvironment

Similar Articles

Cited By