Quantifying intracellular Mycobacterium tuberculosis: An essential issue for in vitro assays.
Deisy Carolina Rodriguez, Marisol Ocampo, Luz Mary Salazar, Manuel Alfonso Patarroyo
Author Information
Deisy Carolina Rodriguez: Universidad Nacional de Colombia, Bogotá, Colombia.
Marisol Ocampo: Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. ORCID
Luz Mary Salazar: Universidad Nacional de Colombia, Bogotá, Colombia.
Manuel Alfonso Patarroyo: Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.
中文译文
English
Many studies about intracellular microorganisms which are important regarding diseases affecting public health have been focused on the recognition of host-pathogen interactions, thereby ascertaining the mechanisms by which the pathogen invades a cell and makes it become its host. Such knowledge enables understanding the immunological response triggered by these interactions for obtaining useful information for developing vaccines and drugs. Quantitative cell infection assay protocols are indispensable regarding studies involving Mycobacterium tuberculosis, which takes the lives of more than 2 million people worldwide every year; however, sometimes these are limited by the pathogen's slow growth. Concerning such limitation, a detailed review is presented here regarding the different methods for quantifying and differentiating an intracellular pathogen, the importance of mycobacteria aggregate dissociation and multiplicity of infection (MOI) in infection assays. The methods' differences, advantages, and disadvantages are discussed regarding intra and extracellular bacteria (on cell surface) differentiation, current problems are outlined, as are the solutions provided using fluorophores and projections made concerning quantitative infection assays.
Front Biosci. 2008 Jan 01;13:650-6
[PMID: 17981577 ]
Chem Phys Lipids. 2015 Jul;189:19-27
[PMID: 26021693 ]
Pathog Dis. 2016 Oct;74(7):
[PMID: 27402783 ]
Nature. 2014 Jan 9;505(7482):218-22
[PMID: 24336213 ]
Med Microbiol Immunol. 2011 Aug;200(3):177-91
[PMID: 21359846 ]
J Clin Microbiol. 2012 Apr;50(4):1166-70
[PMID: 22238448 ]
Microbes Infect. 2008 Aug-Sep;10(10-11):1182-91
[PMID: 18678271 ]
Nature. 2000 Aug 17;406(6797):735-8
[PMID: 10963599 ]
Chem Biol Drug Des. 2014 Dec;84(6):626-41
[PMID: 25041568 ]
J Microbiol Methods. 2006 May;65(2):301-10
[PMID: 16185780 ]
Front Immunol. 2014 Oct 07;5:491
[PMID: 25339958 ]
J Immunol. 1998 Feb 1;160(3):1290-6
[PMID: 9570546 ]
Immunobiology. 2014 Oct;219(10):737-45
[PMID: 24954891 ]
J Clin Microbiol. 2007 Jun;45(6):1941-8
[PMID: 17428943 ]
Cell. 2016 Aug 25;166(5):1065-1068
[PMID: 27565334 ]
Virulence. 2010 Nov-Dec;1(6):558-62
[PMID: 21178505 ]
J Vis Exp. 2014 Jan 17;(83):e51114
[PMID: 24473237 ]
Infect Immun. 1995 Jul;63(7):2652-7
[PMID: 7790081 ]
PLoS Pathog. 2015 Feb 06;11(2):e1004650
[PMID: 25658322 ]
Nat Med. 2009 Feb;15(2):211-4
[PMID: 19182798 ]
J Exp Med. 2003 Jan 6;197(1):7-17
[PMID: 12515809 ]
Cell Mol Life Sci. 2017 May;74(9):1625-1648
[PMID: 27866220 ]
Sci Rep. 2014 Feb 28;4:4236
[PMID: 24577292 ]
Appl Environ Microbiol. 2001 Oct;67(10):4432-9
[PMID: 11571139 ]
Infect Immun. 1994 May;62(5):2021-6
[PMID: 8168968 ]
Infect Immun. 1996 Apr;64(4):1400-6
[PMID: 8606107 ]
Am J Respir Crit Care Med. 2010 Dec 15;182(12):1546-53
[PMID: 20693382 ]
FEBS J. 2014 Mar;281(6):1556-70
[PMID: 24467650 ]
PLoS One. 2012;7(12):e51686
[PMID: 23284742 ]
J Clin Microbiol. 1985 Aug;22(2):168-75
[PMID: 3897263 ]
J Clin Microbiol. 2003 Oct;41(10):4565-72
[PMID: 14532183 ]
J Infect Dis. 2003 Jul 15;188(2):257-66
[PMID: 12854081 ]
Nature. 1985 Sep 19-25;317(6034):262-4
[PMID: 2995819 ]
J Microbiol Methods. 2004 Oct;59(1):23-32
[PMID: 15325750 ]
Mol Microbiol. 1993 Nov;10(3):499-510
[PMID: 7968528 ]
Tuberculosis (Edinb). 2014 Jul;94(4):421-7
[PMID: 24863654 ]
Microb Pathog. 2008 Jul;45(1):1-6
[PMID: 18487035 ]
J Bacteriol. 1933 Feb;25(2):157-99
[PMID: 16559609 ]
Nat Immunol. 2004 Aug;5(8):828-35
[PMID: 15220915 ]
Front Microbiol. 2012 Feb 29;3:71
[PMID: 22393329 ]
Immunobiology. 2016 Apr;221(4):558-67
[PMID: 26719096 ]
Protein Eng Des Sel. 2012 May;25(5):235-42
[PMID: 22427370 ]
J Biol Chem. 2016 Feb 5;291(6):2938-53
[PMID: 26589796 ]
Chem Biol. 2010 Oct 29;17(10):1122-31
[PMID: 21035735 ]
J Immunol. 2008 Sep 15;181(6):3733-9
[PMID: 18768823 ]
J Bacteriol. 2000 Jul;182(13):3832-8
[PMID: 10851001 ]
Microbiology (Reading). 2007 Mar;153(Pt 3):659-666
[PMID: 17322185 ]
Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12706-11
[PMID: 11675502 ]
Proc Soc Exp Biol Med. 1955 Nov;90(2):392-6
[PMID: 13273458 ]
Nat Protoc. 2013 Jun;8(6):1114-24
[PMID: 23680983 ]
Microbiologyopen. 2018 Apr;7(2):e00588
[PMID: 29484835 ]
Mol Microbiol. 1995 Sep;17(5):901-12
[PMID: 8596439 ]
Methods Mol Biol. 2013;983:383-402
[PMID: 23494319 ]
Clin Exp Immunol. 2005 Dec;142(3):481-9
[PMID: 16297160 ]
Biophys J. 2014 Oct 7;107(7):1542-53
[PMID: 25296306 ]
J Vis Exp. 2013 Jun 12;(76):e50116
[PMID: 23792688 ]
Gene. 1996;173(1 Spec No):47-52
[PMID: 8707055 ]
Tuber Lung Dis. 1995 Jun;76(3):240-7
[PMID: 7548908 ]
J Bacteriol. 2000 Jan;182(2):377-84
[PMID: 10629183 ]
PLoS Pathog. 2007 Jul;3(7):e110
[PMID: 17658950 ]
Bacterial Load
Flow Cytometry
Fluorescent Antibody Technique
Host-Pathogen Interactions
Humans
Macrophages
Mycobacterium tuberculosis
Polymerase Chain Reaction
Staining and Labeling
Tuberculosis, Pulmonary