Relaxation dynamics of generalized scale-free polymer networks.

Aurel Jurjiu, Deuticilam Gomes Maia Júnior, Mircea Galiceanu
Author Information
  1. Aurel Jurjiu: Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, Babes-Bolyai University, Street Mihail Kogalniceanu 1, 400084, Cluj-Napoca, Romania. aurel.jurjiu@phys.ubbcluj.ro.
  2. Deuticilam Gomes Maia Júnior: Departamento de Física, Universidade Federal do Amazonas, 69077-000, Manaus, Brazil.
  3. Mircea Galiceanu: Departamento de Física, Universidade Federal do Amazonas, 69077-000, Manaus, Brazil. mircea@ufam.edu.br.

Abstract

We focus on treelike generalized scale-free polymer networks, whose geometries depend on a parameter, γ, that controls their connectivity and on two modularity parameters: the minimum allowed degree, K , and the maximum allowed degree, K . We monitor the influence of these parameters on the static and dynamic properties of the achieved generalized scale-free polymer networks. The relaxation dynamics is studied in the framework of generalized Gaussian structures model by employing the Rouse-type approach. The dynamical quantities on which we focus are the average monomer displacement under external forces and the mechanical relaxation moduli (storage and loss modulus), while for the static and structure properties of these networks we concentrate on the eigenvalue spectrum, diameter, and degree correlations. Depending on the values of network's parameters we were able to switch between distinct hyperbranched structures: networks with more linearlike segments or with a predominant star or dendrimerlike topology. We have observed a stronger influence on K than on K . In the intermediate time (frequency) domain, all physical quantities obey power-laws for polymer networks with γ = 2.5 and K  = 2 and we prove additionally that for networks with γ ≥ 2.5 new regions with constant slope emerge by a proper choice of K . Remarkably, we show that for certain values of the parameter set one may obtain self-similar networks.

References

  1. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011801 [PMID: 21867199]
  3. J Chem Phys. 2009 Jul 28;131(4):044905 [PMID: 19655917]
  4. J Am Chem Soc. 2003 Sep 3;125(35):10543-5 [PMID: 12940736]
  5. J Chem Phys. 2016 Dec 7;145(21):214901 [PMID: 28799361]
  6. J Chem Phys. 2014 Oct 14;141(14):144902 [PMID: 25318736]
  7. Phys Rev Lett. 2004 Apr 2;92(13):138301 [PMID: 15089645]
  8. Phys Rev E. 2016 Mar;93(3):032502 [PMID: 27078400]
  9. J Phys Chem A. 2006 Apr 27;110(16):5235-56 [PMID: 16623450]
  10. J Chem Phys. 2017 Jan 21;146(3):034902 [PMID: 28109236]
  11. Sci Rep. 2014 Dec 19;4:7576 [PMID: 25524793]
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052132 [PMID: 26066144]
  13. J Chem Phys. 2007 Aug 21;127(7):075101 [PMID: 17718632]
  14. J Chem Phys. 2016 Sep 14;145(10 ):104901 [PMID: 27634273]
  15. Sci Rep. 2015 Mar 12;5:9024 [PMID: 25762195]
  16. Sci Rep. 2017 Jan 09;7:39962 [PMID: 28067261]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(1 Pt 2):016112 [PMID: 15324134]
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052147 [PMID: 25353779]
  19. Phys Rev E. 2016 Aug;94(2-1):022307 [PMID: 27627317]
  20. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011114 [PMID: 18763926]
  21. Phys Rev E. 2016 Feb;93(2):022304 [PMID: 26986349]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041803 [PMID: 23214606]
  23. J Chem Phys. 2007 Oct 7;127(13):134904 [PMID: 17919051]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 2):016131 [PMID: 11461355]
  25. Nature. 2000 Oct 5;407(6804):651-4 [PMID: 11034217]
  26. J Chem Phys. 2014 Jan 21;140(3):034901 [PMID: 25669408]
  27. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Aug;62(2 Pt A):1842-5 [PMID: 11088645]
  28. Chem Rev. 2016 Jun 22;116(12 ):6743-836 [PMID: 27299693]
  29. Philos Trans R Soc Lond B Biol Sci. 2009 Jun 27;364(1524):1725-31 [PMID: 19451123]
  30. J Chem Phys. 2013 Mar 21;138(11):114904 [PMID: 23534659]
  31. Phys Rev Lett. 2004 Mar 19;92(11):118701 [PMID: 15089179]

Word Cloud

Created with Highcharts 10.0.0networksKgeneralizedpolymerscale-freedegreefocusparameterallowedinfluenceparametersstaticpropertiesrelaxationdynamicsquantitiesvalues5treelikewhosegeometriesdependγcontrolsconnectivitytwomodularityparameters:minimummaximummonitordynamicachievedstudiedframeworkGaussianstructuresmodelemployingRouse-typeapproachdynamicalaveragemonomerdisplacementexternalforcesmechanicalmodulistoragelossmodulusstructureconcentrateeigenvaluespectrumdiametercorrelationsDependingnetwork'sableswitchdistincthyperbranchedstructures:linearlikesegmentspredominantstardendrimerliketopologyobservedstrongerintermediatetimefrequencydomainphysicalobeypower-lawsγ = 2 = 2proveadditionallyγ ≥ 2newregionsconstantslopeemergeproperchoiceRemarkablyshowcertainsetonemayobtainself-similarRelaxation

Similar Articles

Cited By