Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis.

Meraj A Khan, Lijy M Philip, Guillaume Cheung, Shawn Vadakepeedika, Hartmut Grasemann, Neil Sweezey, Nades Palaniyar
Author Information
  1. Meraj A Khan: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
  2. Lijy M Philip: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
  3. Guillaume Cheung: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
  4. Shawn Vadakepeedika: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
  5. Hartmut Grasemann: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
  6. Neil Sweezey: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
  7. Nades Palaniyar: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.

Abstract

Neutrophils migrating from the blood (pH 7.35-7.45) into the surrounding tissues encounter changes in extracellular pH (pH) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H ions reducing the intracellular pH (pH). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pH (ranging from 6.6 to 7.8; every 0.2 units) increased pH of both activated and resting neutrophils within 10-20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H ions, pH is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased lipopolysaccharide-, (Gram-negative)-, and (Gram-positive)-induced NETosis. Thus, higher pH promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pH-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H ions, whereas each bicarbonate HCO3 ion binds 1H ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar bicarbonate solution. For that reason, regulating NETosis by pH with specific buffers such as THAM could be more effective than bicarbonate in managing NET-related diseases.

Keywords

References

  1. Neoplasia. 2003 Mar-Apr;5(2):135-45 [PMID: 12659686]
  2. Front Immunol. 2016 Nov 04;7:484 [PMID: 27867387]
  3. Redox Biol. 2015 Dec;6:472-85 [PMID: 26432659]
  4. Int Forum Allergy Rhinol. 2011 Mar-Apr;1(2):123-7 [PMID: 22034590]
  5. Nat Chem Biol. 2015 Mar;11(3):189-91 [PMID: 25622091]
  6. J Leukoc Biol. 1987 Jan;41(1):25-32 [PMID: 3027217]
  7. Cancer Res. 1989 Aug 15;49(16):4373-84 [PMID: 2545340]
  8. Front Immunol. 2017 Feb 28;8:184 [PMID: 28293240]
  9. J Cell Biol. 2007 Jan 15;176(2):231-41 [PMID: 17210947]
  10. J Membr Biol. 2006;211(3):139-50 [PMID: 17091214]
  11. Blood. 2002 Nov 1;100(9):3383-91 [PMID: 12384441]
  12. Cell Mol Immunol. 2015 Jan;12(1):5-23 [PMID: 25263488]
  13. Methods Enzymol. 1981;80 Pt C:581-8 [PMID: 7043201]
  14. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):18022-7 [PMID: 19805063]
  15. Proc Soc Exp Biol Med. 1971 Sep;137(4):1328-32 [PMID: 5138458]
  16. Sci Rep. 2017 Feb 08;7:41749 [PMID: 28176807]
  17. Clin Biochem. 1991 Jun;24(3):241-7 [PMID: 1651820]
  18. Annu Rev Immunol. 2005;23:197-223 [PMID: 15771570]
  19. Trends Cell Biol. 2011 Jan;21(1):20-8 [PMID: 20961760]
  20. Nat Commun. 2016 Mar 11;7:10973 [PMID: 26964500]
  21. Front Immunol. 2013 Jan 24;4:1 [PMID: 23355837]
  22. Front Immunol. 2016 Dec 05;7:565 [PMID: 27994595]
  23. J Immunol. 2008 Feb 1;180(3):1895-902 [PMID: 18209087]
  24. Biochimie. 2008 Feb;90(2):227-42 [PMID: 18021746]
  25. J Biol Chem. 1996 Jul 5;271(27):15963-70 [PMID: 8663143]
  26. PLoS One. 2014 May 12;9(5):e97088 [PMID: 24819773]
  27. Biomed Res Int. 2014;2014:598986 [PMID: 25302301]
  28. J Leukoc Biol. 2015 Jul;98(1):99-106 [PMID: 25917460]
  29. PLoS One. 2015 Apr 17;10(4):e0125906 [PMID: 25885273]
  30. Radiat Res. 1988 Nov;116(2):305-12 [PMID: 3186938]
  31. J Leukoc Biol. 2012 Oct;92(4):841-9 [PMID: 22802447]
  32. J Appl Physiol (1985). 1994 Feb;76(2):806-12 [PMID: 8175593]
  33. J Gen Physiol. 1985 Mar;85(3):443-70 [PMID: 2985737]
  34. Biochemistry (Mosc). 2006 Jun;71(6):667-77 [PMID: 16827659]
  35. J Biol Chem. 2002 Feb 22;277(8):6059-66 [PMID: 11744729]
  36. Front Immunol. 2016 Dec 09;7:583 [PMID: 28018350]
  37. Mediators Inflamm. 2012;2012:849136 [PMID: 22481865]
  38. J Cyst Fibros. 2003 Sep;2(3):129-35 [PMID: 15463861]
  39. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2817-22 [PMID: 25730848]
  40. Eur Respir J. 2003 Jan;21(1):37-42 [PMID: 12570106]
  41. Nat Rev Immunol. 2013 Mar;13(3):159-75 [PMID: 23435331]
  42. Sci Rep. 2017 Jun 13;7(1):3409 [PMID: 28611461]
  43. J Pharmacol Exp Ther. 2013 Jun;345(3):430-7 [PMID: 23536315]
  44. Infect Immun. 2012 May;80(5):1891-9 [PMID: 22371374]
  45. Front Immunol. 2016 Apr 14;7:137 [PMID: 27148258]
  46. Pharmacol Res Perspect. 2017 Mar 10;5(2):e00303 [PMID: 28357129]
  47. Nat Rev Immunol. 2017 Apr;17 (4):248-261 [PMID: 28287106]
  48. J Cell Biol. 2010 Nov 1;191(3):677-91 [PMID: 20974816]
  49. Biochemistry. 2007 Jun 5;46(22):6578-87 [PMID: 17497940]
  50. Arthritis Rheum. 1966 Feb;9(1):47-56 [PMID: 4952418]
  51. Infect Disord Drug Targets. 2008 Sep;8(3):195-205 [PMID: 18782037]
  52. J Immunol. 2012 Sep 15;189(6):2689-95 [PMID: 22956760]
  53. J Cyst Fibros. 2011 Sep;10(5):298-306 [PMID: 21719362]
  54. Front Immunol. 2018 Jan 09;8:1849 [PMID: 29375550]
  55. Crit Care. 2000;4(1):6-14 [PMID: 11094491]
  56. Biochem J. 1988 Apr 15;251(2):563-7 [PMID: 2456757]
  57. Biochemistry. 2005 Aug 9;44(31):10570-82 [PMID: 16060666]
  58. Blood. 2014 Jan 23;123(4):597-600 [PMID: 24458280]

Word Cloud

Created with Highcharts 10.0.0pHNETosisextracellularneutrophilsbicarbonateTrisionsneutrophilproductionROSactivityactivatedrestinghigherNox-dependent7NADPH2NoxHtrapformationincreasesproteasefound6increasedlowerstimulatedspontaneousRaisingGram-negativeGram-positiveTHAMionsolutionbacteria-inducedNeutrophilsmigratingblood35-745surroundingtissuesencounterchangesconditionsUponactivationoxidasegeneratelargeamountsreducingintracellularNeverthelessregulatesNETclearlyestablishedhypothesizedincreasingNox-mediatedreactiveoxygenspeciesstimulatingraisingranging8every0unitswithin10-20 minSeminaphtharhodafluordualfluorescencemeasurementsSincegeneratescomparedalsoR123generationflowcytometryplatereaderassayimagingphorbolmyristateacetate-inducedSytoxGreenassaysimmunoconfocalmicroscopyquantifyingNETshistoneH4cleavageWesternblotslipopolysaccharide---inducedThuspromotedoppositeeffectstudiesprovidedmechanisticstepspH-mediatedregulationeithersodiumbaseclinicallyknownhydroxymethylaminomethanetromethaminemoleculecanbind3HwhereasHCO3binds1HThereforeamountrequiredcauseincreaselevellessequimolarreasonregulatingspecificbufferseffectivemanagingNET-relateddiseasesRegulatingNETosis:IncreasingPromotesOxidase-DependentNADPH-dependentcorrectinglipopolysaccharide-induced

Similar Articles

Cited By