Decoding Auditory Saliency from Brain Activity Patterns during Free Listening to Naturalistic Audio Excerpts.

Shijie Zhao, Junwei Han, Xi Jiang, Heng Huang, Huan Liu, Jinglei Lv, Lei Guo, Tianming Liu
Author Information
  1. Shijie Zhao: School of Automation, Northwestern Polytechnical University, Xi'an, China.
  2. Junwei Han: School of Automation, Northwestern Polytechnical University, Xi'an, China. jhan@nwpu.edu.cn.
  3. Xi Jiang: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
  4. Heng Huang: School of Automation, Northwestern Polytechnical University, Xi'an, China.
  5. Huan Liu: School of Automation, Northwestern Polytechnical University, Xi'an, China.
  6. Jinglei Lv: School of Automation, Northwestern Polytechnical University, Xi'an, China.
  7. Lei Guo: School of Automation, Northwestern Polytechnical University, Xi'an, China.
  8. Tianming Liu: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA. tliu@cs.uga.edu.

Abstract

In recent years, natural stimuli such as audio excerpts or video streams have received increasing attention in neuroimaging studies. Compared with conventional simple, idealized and repeated artificial stimuli, natural stimuli contain more unrepeated, dynamic and complex information that are more close to real-life. However, there is no direct correspondence between the stimuli and any sensory or cognitive functions of the brain, which makes it difficult to apply traditional hypothesis-driven analysis methods (e.g., the general linear model (GLM)). Moreover, traditional data-driven methods (e.g., independent component analysis (ICA)) lack quantitative modeling of stimuli, which may limit the power of analysis models. In this paper, we propose a sparse representation based decoding framework to explore the neural correlates between the computational audio features and functional brain activities under free listening conditions. First, we adopt a biologically-plausible auditory saliency feature to quantitatively model the audio excerpts and meanwhile develop sparse representation/dictionary learning method to learn an over-complete dictionary basis of brain activity patterns. Then, we reconstruct the auditory saliency features from the learned fMRI-derived dictionaries. After that, a group-wise analysis procedure is conducted to identify the associated brain regions and networks. Experiments showed that the auditory saliency feature can be well decoded from brain activity patterns by our methods, and the identified brain regions and networks are consistent and meaningful. At last, our method is evaluated and compared with ICA method and experimental results demonstrated the superiority of our methods.

Keywords

References

  1. IEEE Trans Cybern. 2015 Aug;45(8):1692-703 [PMID: 25314715]
  2. IEEE Trans Image Process. 2017 Jul;26(7):3196-3209 [PMID: 28422659]
  3. Hum Neurobiol. 1985;4(4):219-27 [PMID: 3836989]
  4. Med Image Anal. 2015 Feb;20(1):112-34 [PMID: 25476415]
  5. Top Cogn Sci. 2012 Oct;4(4):468-84 [PMID: 23060125]
  6. Brain Imaging Behav. 2016 Mar;10(1):21-32 [PMID: 25732072]
  7. Neuron. 1999 Apr;22(4):751-61 [PMID: 10230795]
  8. Neuroimage. 2014 Mar;88:170-80 [PMID: 24269803]
  9. Bioinformatics. 2017 Sep 18;: [PMID: 28968815]
  10. Neuron. 2011 Mar 10;69(5):1015-28 [PMID: 21382559]
  11. IEEE Trans Med Imaging. 2011 May;30(5):1076-89 [PMID: 21138799]
  12. Brain Imaging Behav. 2018 Jun;12(3):728-742 [PMID: 28597338]
  13. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):803-10 [PMID: 9448244]
  14. Curr Biol. 2005 Nov 8;15(21):1943-7 [PMID: 16271872]
  15. IEEE Trans Image Process. 2005 Apr;14(4):511-24 [PMID: 15825485]
  16. Neuroimage. 2008 Oct 1;42(4):1414-29 [PMID: 18598768]
  17. Hum Brain Mapp. 2005 Sep;26(1):15-29 [PMID: 15852468]
  18. Neuroimage. 2013 Dec;83:627-36 [PMID: 23810975]
  19. Nat Rev Neurosci. 2001 Mar;2(3):194-203 [PMID: 11256080]
  20. Nature. 1996 Jun 13;381(6583):607-9 [PMID: 8637596]
  21. Neuroimage. 2010 Mar;50(1):302-13 [PMID: 20005297]
  22. Proc Biol Sci. 2014 Sep 22;281(1791):20141000 [PMID: 25100695]
  23. Nat Neurosci. 2007 Jun;10(6):772-8 [PMID: 17468750]
  24. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10415-22 [PMID: 19556548]
  25. Hum Brain Mapp. 2001 Nov;14(3):140-51 [PMID: 11559959]
  26. Neuroimage. 1998 Jan;7(1):30-40 [PMID: 9500830]
  27. IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 [PMID: 14964560]
  28. Med Image Anal. 2001 Jun;5(2):143-56 [PMID: 11516708]
  29. J Comput Neurosci. 2009 Aug;27(1):103-14 [PMID: 19104925]
  30. IEEE Trans Med Imaging. 2018 Jul;37(7):1551-1561 [PMID: 28641247]
  31. Trends Cogn Sci. 2010 Apr;14(4):172-9 [PMID: 20171926]
  32. Med Image Anal. 2017 Dec;42:200-211 [PMID: 28843214]
  33. Neuroimage. 2002 Feb;15(2):407-21 [PMID: 11798275]
  34. Behav Brain Sci. 2012 Jun;35(3):158-9 [PMID: 22617666]
  35. Curr Opin Neurobiol. 2001 Apr;11(2):157-63 [PMID: 11301234]
  36. Cereb Cortex. 2009 Nov;19(11):2579-94 [PMID: 19240137]
  37. Neuroimage. 2013 Feb 15;67:213-26 [PMID: 23202431]
  38. IEEE Trans Biomed Eng. 2017 Jun 15;:null [PMID: 28641239]
  39. Neuroscience. 2017 Nov 19;364:1-14 [PMID: 28842187]
  40. Science. 2004 Mar 12;303(5664):1634-40 [PMID: 15016991]
  41. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 [PMID: 19620724]
  42. J Comput Assist Tomogr. 1999 Mar-Apr;23(2):265-71 [PMID: 10096335]
  43. Front Neuroinform. 2010 Mar 19;4:5 [PMID: 20428497]
  44. Neuroimage. 2005 Jan 15;24(2):339-49 [PMID: 15627577]
  45. Neuroimage. 2008 May 15;41(1):69-79 [PMID: 18378168]
  46. Neuroimage. 2012 Feb 15;59(4):3677-89 [PMID: 22116038]
  47. IEEE Trans Biomed Eng. 2015 Apr;62(4):1120-31 [PMID: 25420254]
  48. Curr Biol. 2011 Oct 11;21(19):1641-6 [PMID: 21945275]
  49. Trends Cogn Sci. 2010 Jan;14(1):40-8 [PMID: 20004608]
  50. Hum Brain Mapp. 2015 Dec;36(12):5301-19 [PMID: 26466353]
  51. Trends Cogn Sci. 2008 Mar;12(3):87-91 [PMID: 18262826]
  52. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 [PMID: 12506194]
  53. Neuroimage. 2012 Aug 15;62(2):1272-8 [PMID: 22348879]
  54. Brain Imaging Behav. 2018 Jun;12(3):743-757 [PMID: 28600737]
  55. Vision Res. 2002 Jan;42(1):107-23 [PMID: 11804636]
  56. J Neurosci. 1998 Aug 15;18(16):6583-98 [PMID: 9698345]
  57. Brain Imaging Behav. 2017 Feb;11(1):253-263 [PMID: 26860834]
  58. J Neurosci Methods. 2012 Feb 15;204(1):68-81 [PMID: 22108139]

Grants

  1. 61473231/National Science Foundation of China
  2. 61522207/National Natural Science Foundation of China (CN)
  3. 3102017zy030/Fundamental Research Funds for the Central Universities
  4. 2017M613206/China Postdoctoral Science Foundation
  5. R01 DA-033393/NIH HHS
  6. R01 AG-042599/NIH HHS
  7. IIS-1149260/NSF CAREER Award
  8. CBET-1302089/National Science Foundation
  9. BCS-1439051/National Science Foundation
  10. DBI-1564736/National Science Foundation

MeSH Term

Acoustic Stimulation
Auditory Perception
Brain
Humans
Magnetic Resonance Imaging
Random Allocation

Word Cloud

Created with Highcharts 10.0.0stimulibrainanalysismethodssaliencyaudioauditorymethodnetworksnaturalexcerptstraditionalegmodelICAsparserepresentationfeaturesfeatureactivitypatternsregionsDecodingAuditoryBrainrecentyearsvideostreamsreceivedincreasingattentionneuroimagingstudiesComparedconventionalsimpleidealizedrepeatedartificialcontainunrepeateddynamiccomplexinformationclosereal-lifeHoweverdirectcorrespondencesensorycognitivefunctionsmakesdifficultapplyhypothesis-drivengenerallinearGLMMoreoverdata-drivenindependentcomponentlackquantitativemodelingmaylimitpowermodelspaperproposebaseddecodingframeworkexploreneuralcorrelatescomputationalfunctionalactivitiesfreelisteningconditionsFirstadoptbiologically-plausiblequantitativelymeanwhiledeveloprepresentation/dictionarylearninglearnover-completedictionarybasisreconstructlearnedfMRI-deriveddictionariesgroup-wiseprocedureconductedidentifyassociatedExperimentsshowedcanwelldecodedidentifiedconsistentmeaningfullastevaluatedcomparedexperimentalresultsdemonstratedsuperioritySaliencyActivityPatternsFreeListeningNaturalisticAudioExcerptsNaturalSparse

Similar Articles

Cited By