The importance of trans-generational effects in Lepidoptera.

Luisa Woestmann, Marjo Saastamoinen
Author Information
  1. Luisa Woestmann: Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Finland.
  2. Marjo Saastamoinen: Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Finland.

Abstract

The importance of trans-generational effects in shaping an individuals' phenotype and fitness, and consequently even impacting population dynamics is increasingly apparent. Most of the research on trans-generational effects still focuses on plants, mammals, and birds. In the past few years, however, increasing number of studies, especially on maternal effects, have highlighted their importance also in many insect systems. Lepidoptera, specifically butterflies, have been used as model systems for studying the role of phenotypic plasticity within generations. As ectotherms, they are highly sensitive to environmental variation, and indeed many butterflies show adaptive phenotypic plasticity in response to environmental conditions. Here, we synthesize what is known about trans-generational effects in Lepidoptera, compile evidence for different environmental cues that are important drivers of trans-generational effects, and point out which offspring traits are mainly impacted. Finally, we emphasize directions for future research that are needed for better understanding of the adaptive nature of trans-generational effects in Lepidoptera in particular, but potentially also in other organisms.

Keywords

References

  1. J Anim Ecol. 2008 Sep;77(5):1038-46 [PMID: 18631260]
  2. Nat Rev Genet. 2002 Jun;3(6):442-52 [PMID: 12042771]
  3. Trends Genet. 2011 Apr;27(4):127-31 [PMID: 21288591]
  4. Mech Ageing Dev. 2006 Oct;127(10):802-7 [PMID: 16939688]
  5. J Insect Physiol. 2010 Sep;56(9):1275-83 [PMID: 20416319]
  6. Ecology. 2010 Jul;91(7):2003-12 [PMID: 20715623]
  7. Am Nat. 1998 Dec;152(6):853-60 [PMID: 18811432]
  8. Physiol Biochem Zool. 2014 Sep-Oct;87(5):684-94 [PMID: 25244380]
  9. J Comp Physiol B. 2009 Jan;179(1):87-98 [PMID: 18648822]
  10. Ecol Evol. 2013 Sep;3(10):3576-89 [PMID: 24223292]
  11. Trends Ecol Evol. 2008 Aug;23(8):432-8 [PMID: 18586350]
  12. Oecologia. 2012 Aug;169(4):1005-14 [PMID: 22271202]
  13. J Anim Ecol. 2012 Mar;81(2):386-94 [PMID: 21999965]
  14. Annu Rev Entomol. 1998;43:63-83 [PMID: 9444750]
  15. J Anim Ecol. 2006 Jan;75(1):91-100 [PMID: 16903046]
  16. Front Zool. 2008 Jul 10;5:10 [PMID: 18616795]
  17. J Insect Physiol. 2007 Sep;53(9):964-73 [PMID: 17493631]
  18. J Therm Biol. 2010 Feb;35(2):59-69 [PMID: 28799914]
  19. Biol Rev Camb Philos Soc. 2012 May;87(2):290-312 [PMID: 21929715]
  20. Oecologia. 2015 Nov;179(3):741-51 [PMID: 26099361]
  21. Proc Biol Sci. 2003 Oct 7;270(1528):2051-6 [PMID: 14561294]
  22. Heredity (Edinb). 2011 Oct;107(5):421-32 [PMID: 21673741]
  23. Evolution. 2004 Feb;58(2):360-6 [PMID: 15068352]
  24. Insect Mol Biol. 2011 Oct;20(5):553-65 [PMID: 21699596]
  25. Am Nat. 2013 Feb;181(2):E28-42 [PMID: 23348784]
  26. Am Nat. 2015 Mar;185(3):E55-69 [PMID: 25674697]
  27. BMC Evol Biol. 2010 Nov 10;10:345 [PMID: 21067561]
  28. Science. 1979 Oct 5;206(4414):83-4 [PMID: 17812454]
  29. Annu Rev Entomol. 2011;56:143-59 [PMID: 20809802]
  30. PLoS Biol. 2010 Nov 02;8(11):e1000506 [PMID: 21072239]
  31. Oecologia. 1994 Sep;99(3-4):281-289 [PMID: 28313882]
  32. Trends Ecol Evol. 1998 Oct 1;13(10):403-7 [PMID: 21238360]
  33. Oecologia. 2011 Nov;167(3):647-55 [PMID: 21625983]
  34. Ecology. 2015 Jul;96(7):1966-73 [PMID: 26378318]
  35. Proc Biol Sci. 2003 Oct 7;270(1528):2065-71 [PMID: 14561296]
  36. Ecology. 2006 Mar;87(3):648-54 [PMID: 16602294]
  37. Evol Appl. 2012 Jan;5(1):66-75 [PMID: 25568030]
  38. Evolution. 1986 May;40(3):649-651 [PMID: 28556320]
  39. Nat Rev Genet. 2008 Jun;9(6):465-76 [PMID: 18463664]
  40. BMC Genomics. 2009 Oct 14;10:472 [PMID: 19828049]
  41. Proc Biol Sci. 2006 Jun 7;273(1592):1399-405 [PMID: 16777729]
  42. Proc Biol Sci. 2013 Feb 13;280(1756):20122856 [PMID: 23407834]
  43. Integr Comp Biol. 2014 Nov;54(5):880-9 [PMID: 24920750]
  44. Bull Entomol Res. 2002 Apr;92(2):101-8 [PMID: 12020367]
  45. Parasitology. 2007 May;134(Pt 5):657-68 [PMID: 17140464]
  46. PLoS One. 2013 Oct 08;8(10):e75923 [PMID: 24116081]
  47. Trends Ecol Evol. 2005 Oct;20(10):527-33 [PMID: 16701430]
  48. J Exp Biol. 2000 Jun;203(Pt 11):1741-54 [PMID: 10804164]
  49. J Anim Ecol. 2015 Jan;84(1):310-21 [PMID: 25251734]
  50. Proc Biol Sci. 2011 Mar 22;278(1707):871-6 [PMID: 20861049]
  51. J Evol Biol. 2014 Aug;27(8):1733-43 [PMID: 24909057]
  52. Evol Dev. 2006 Mar-Apr;8(2):202-14 [PMID: 16509898]
  53. J Biosci. 2005 Feb;30(1):65-74 [PMID: 15824442]
  54. Trends Ecol Evol. 2001 Apr 1;16(4):165-167 [PMID: 11245932]
  55. Scand J Immunol. 1989 May;29(5):499-505 [PMID: 2658012]
  56. Oecologia. 1991 Jul;87(2):288-294 [PMID: 28313847]
  57. Biol Reprod. 2005 Jun;72(6):1336-43 [PMID: 15689534]
  58. Oecologia. 2013 Jan;171(1):197-205 [PMID: 22744741]
  59. Evol Appl. 2009 Feb;2(1):113-21 [PMID: 25567851]
  60. J Anim Ecol. 2011 Nov;80(6):1174-83 [PMID: 21644979]
  61. Am Nat. 2010 Dec;176(6):686-98 [PMID: 20955012]
  62. Eur J Hum Genet. 2006 Feb;14(2):159-66 [PMID: 16391557]
  63. Trends Endocrinol Metab. 2007 Apr;18(3):94-9 [PMID: 17320410]
  64. Oecologia. 2013 Jan;171(1):93-104 [PMID: 22814878]
  65. Nat Biotechnol. 2010 May;28(5):516-20 [PMID: 20436463]
  66. Biol Lett. 2008 Feb 23;4(1):6-8 [PMID: 17986427]
  67. Proc Biol Sci. 2011 Mar 7;278(1706):789-97 [PMID: 20826484]
  68. Proc Biol Sci. 2009 Jul 22;276(1667):2617-24 [PMID: 19369263]
  69. Evolution. 2012 Nov;66(11):3558-69 [PMID: 23106718]
  70. Oecologia. 1981 Oct;51(1):91-96 [PMID: 28310315]
  71. J Anim Ecol. 2010 Mar;79(2):403-13 [PMID: 19840170]
  72. Oecologia. 2005 Jul;144(3):353-61 [PMID: 15891831]
  73. Evolution. 1988 May;42(3):545-555 [PMID: 28564010]
  74. Curr Biol. 2003 Mar 18;13(6):489-92 [PMID: 12646131]

Word Cloud

Created with Highcharts 10.0.0effectstrans-generationalLepidopteraimportanceplasticityenvironmentalresearchmaternalalsomanysystemsbutterfliesphenotypicadaptiveoffspringeffectshapingindividuals'phenotypefitnessconsequentlyevenimpactingpopulationdynamicsincreasinglyapparentstillfocusesplantsmammalsbirdspastyearshoweverincreasingnumberstudiesespeciallyhighlightedinsectspecificallyusedmodelstudyingrolewithingenerationsectothermshighlysensitivevariationindeedshowresponseconditionssynthesizeknowncompileevidencedifferentcuesimportantdriverspointtraitsmainlyimpactedFinallyemphasizedirectionsfutureneededbetterunderstandingnatureparticularpotentiallyorganismsbutterflymothqualitypaternal

Similar Articles

Cited By