Pioneer transcription factors shape the epigenetic landscape.

Alexandre Mayran, Jacques Drouin
Author Information
  1. Alexandre Mayran: From the Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Quebec H2W 1R7, Canada.
  2. Jacques Drouin: From the Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Quebec H2W 1R7, Canada jacques.drouin@ircm.qc.ca.

Abstract

Pioneer transcription factors have the unique and important role of unmasking chromatin domains during development to allow the implementation of new cellular programs. Compared with those of other transcription factors, this activity implies that pioneer factors can recognize their target DNA sequences in so-called compacted or "closed" heterochromatin and can trigger remodeling of the adjoining chromatin landscape to provide accessibility to nonpioneer transcription factors. Recent studies identified several steps of pioneer action, namely rapid but weak initial binding to heterochromatin and stabilization of binding followed by chromatin opening and loss of cytosine-phosphate-guanine (CpG) methylation that provides epigenetic memory. Whereas CpG demethylation depends on replication, chromatin opening does not. In this Minireview, we highlight the unique properties of this transcription factor class and the challenges of understanding their mechanism of action.

Keywords

References

  1. Elife. 2016 Nov 19;5: [PMID: 27855781]
  2. Cell. 2009 Jul 23;138(2):245-56 [PMID: 19632176]
  3. Nat Genet. 2007 Mar;39(3):311-8 [PMID: 17277777]
  4. Nature. 2013 Nov 21;503(7476):360-4 [PMID: 24056933]
  5. Nat Genet. 2006 Nov;38(11):1289-97 [PMID: 17013392]
  6. Nat Biotechnol. 2008 Jan;26(1):101-6 [PMID: 18059259]
  7. Mol Cell. 2014 Jun 5;54(5):844-857 [PMID: 24813947]
  8. Methods. 2009 Jul;48(3):233-9 [PMID: 19303047]
  9. J Mol Biol. 2011 May 27;409(1):36-46 [PMID: 21272588]
  10. Genes Dev. 2012 Apr 1;26(7):668-82 [PMID: 22431510]
  11. Cell. 2013 Oct 24;155(3):621-35 [PMID: 24243019]
  12. Cell. 2008 Mar 21;132(6):958-70 [PMID: 18358809]
  13. Cancer Lett. 2013 Jan 28;328(2):198-206 [PMID: 23022474]
  14. Nat Genet. 2015 Nov;47(11):1346-51 [PMID: 26457646]
  15. Cell. 2017 Jan 26;168(3):442-459.e20 [PMID: 28111071]
  16. Nature. 2008 Nov 20;456(7220):400-3 [PMID: 18931655]
  17. Development. 2005 Sep;132(17):4005-14 [PMID: 16079152]
  18. PLoS Genet. 2006 Sep 29;2(9):e161 [PMID: 17009877]
  19. Cell. 2009 Jan 23;136(2):364-77 [PMID: 19167336]
  20. Genes Dev. 2014 Jan 1;28(1):8-13 [PMID: 24395244]
  21. Stem Cells. 2009 Feb;27(2):317-28 [PMID: 19056910]
  22. Cell Stem Cell. 2011 Jan 7;8(1):96-105 [PMID: 21211784]
  23. Nature. 2007 Jul 19;448(7151):313-7 [PMID: 17554338]
  24. J Biol Chem. 2004 Nov 12;279(46):48350-9 [PMID: 15339928]
  25. Nature. 2015 Dec 10;528(7581):218-24 [PMID: 26659182]
  26. Genome Res. 2011 Apr;21(4):555-65 [PMID: 21233399]
  27. Cell. 2015 Apr 23;161(3):555-568 [PMID: 25892221]
  28. Clin Cancer Res. 2011 Apr 1;17(7):1924-34 [PMID: 21325289]
  29. BMC Dev Biol. 2007 Apr 23;7:37 [PMID: 17451603]
  30. Nat Genet. 2018 Feb;50(2):250-258 [PMID: 29358654]
  31. Immunity. 2016 Mar 15;44(3):527-541 [PMID: 26982363]
  32. Immunol Rev. 2010 Nov;238(1):63-75 [PMID: 20969585]
  33. Cell. 2012 Nov 21;151(5):994-1004 [PMID: 23159369]
  34. Nature. 2016 Feb 4;530(7588):113-6 [PMID: 26814966]
  35. Mol Cell. 2012 Dec 28;48(6):849-62 [PMID: 23219530]
  36. Cancer Res. 2010 Aug 15;70(16):6497-508 [PMID: 20663909]
  37. Development. 1998 Dec;125(24):4909-17 [PMID: 9811575]
  38. Stem Cell Reports. 2015 Aug 11;5(2):232-47 [PMID: 26235892]
  39. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11651-6 [PMID: 16087863]
  40. Genome Biol. 2016 Feb 27;17:36 [PMID: 26922637]
  41. J Clin Pathol. 2008 Mar;61(3):327-32 [PMID: 18037662]
  42. Science. 2015 Jun 19;348(6241):1372-6 [PMID: 26089518]
  43. Genome Res. 2015 Nov;25(11):1715-26 [PMID: 26335634]
  44. Elife. 2017 Mar 13;6: [PMID: 28287392]
  45. Cell. 2016 Apr 21;165(3):593-605 [PMID: 27062924]
  46. Cell. 2005 Jul 15;122(1):33-43 [PMID: 16009131]
  47. EMBO J. 2016 Jan 4;35(1):24-45 [PMID: 26516211]
  48. Blood. 2003 Jan 15;101(2):633-9 [PMID: 12393557]
  49. Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
  50. Cell. 2012 Dec 21;151(7):1608-16 [PMID: 23260146]
  51. Genes Dev. 2013 Feb 1;27(3):251-60 [PMID: 23355396]
  52. Mol Cell. 2012 Jul 13;47(1):38-49 [PMID: 22633955]
  53. Nature. 2011 Jun 29;475(7356):390-3 [PMID: 21716291]
  54. Genes Dev. 2009 Apr 1;23(7):804-9 [PMID: 19339686]
  55. Nat Genet. 2018 Feb;50(2):259-269 [PMID: 29358650]
  56. Nat Cell Biol. 2008 Jan;10(1):77-84 [PMID: 18066051]
  57. Trends Cell Biol. 2008 Sep;18(9):421-9 [PMID: 18715783]
  58. EMBO J. 2011 Sep 13;30(19):3962-76 [PMID: 21915096]
  59. Mol Cell. 2002 Feb;9(2):279-89 [PMID: 11864602]
  60. Nat Genet. 2009 Aug;41(8):941-5 [PMID: 19633671]
  61. Cell. 2012 Aug 17;150(4):725-37 [PMID: 22901805]
  62. Nature. 2012 Jul 12;487(7406):239-43 [PMID: 22722839]
  63. Nat Biotechnol. 2014 Feb;32(2):171-178 [PMID: 24441470]
  64. Nature. 1993 Jul 29;364(6436):412-20 [PMID: 8332212]
  65. Mol Cell Biol. 2005 Apr;25(7):2622-31 [PMID: 15767668]
  66. Cell Rep. 2017 Sep 26;20(13):3236-3247 [PMID: 28954238]
  67. Genes Dev. 2012 Oct 15;26(20):2299-310 [PMID: 23070814]
  68. Nat Genet. 2016 Sep;48(9):1003-13 [PMID: 27500525]
  69. Genome Res. 2015 Feb;25(2):179-88 [PMID: 25391375]
  70. Mol Cell. 2016 Apr 7;62(1):79-91 [PMID: 27058788]
  71. Genome Res. 2013 Mar;23(3):555-67 [PMID: 23325432]
  72. Nucleic Acids Res. 2017 Sep 29;45(17):9889-9900 [PMID: 28973438]
  73. Genome Res. 2011 Oct;21(10):1757-67 [PMID: 21750106]
  74. Mol Cell. 1999 Dec;4(6):961-9 [PMID: 10635321]
  75. Genes Dev. 2016 Nov 15;30(22):2538-2550 [PMID: 27920086]
  76. J Biol Chem. 2007 Dec 7;282(49):35583-93 [PMID: 17923482]
  77. Oncogene. 1999 Jul 29;18(30):4348-56 [PMID: 10439042]
  78. Genes Dev. 2016 Apr 1;30(7):733-50 [PMID: 27036965]
  79. Genes Chromosomes Cancer. 2011 May;50(5):313-26 [PMID: 21305641]
  80. Genome Res. 2016 Jul;26(7):908-17 [PMID: 27197220]
  81. Nat Cell Biol. 2016 Nov;18(11):1139-1148 [PMID: 27723719]
  82. Nature. 2012 Apr 18;486(7403):346-52 [PMID: 22522925]
  83. Cell Rep. 2016 Dec 6;17(10):2715-2723 [PMID: 27926873]
  84. Cell Rep. 2015 Mar 4;:null [PMID: 25753420]
  85. Cell. 2011 Aug 19;146(4):544-54 [PMID: 21835447]
  86. Nat Rev Mol Cell Biol. 2011 Nov 23;12(12):799-814 [PMID: 22108599]
  87. Nature. 2015 Dec 24;528(7583):575-9 [PMID: 26675734]
  88. Nat Struct Mol Biol. 2011 Jun;18(6):742-6 [PMID: 21623366]
  89. Cell Stem Cell. 2014 May 1;14(5):575-91 [PMID: 24792115]
  90. Ciba Found Symp. 1975;0(29):161-82 [PMID: 1039909]
  91. Cold Spring Harb Perspect Biol. 2016 May 02;8(5): [PMID: 27141050]
  92. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20067-71 [PMID: 19104055]
  93. Cell. 2007 Feb 23;128(4):669-81 [PMID: 17320505]
  94. EMBO J. 1998 Jan 2;17(1):244-54 [PMID: 9427758]
  95. Immunity. 2010 May 28;32(5):714-25 [PMID: 20451411]
  96. Cell. 2007 Nov 30;131(5):861-72 [PMID: 18035408]
  97. Nature. 2011 May 11;475(7356):386-9 [PMID: 21562492]
  98. Genes Dev. 1996 Jul 1;10(13):1670-82 [PMID: 8682297]
  99. Trends Biochem Sci. 1997 Jun;22(6):197-202 [PMID: 9204705]
  100. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  101. Genes Dev. 2014 Apr 15;28(8):812-28 [PMID: 24736841]
  102. Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6057-62 [PMID: 18424555]
  103. Nat Genet. 2011 Jan;43(1):27-33 [PMID: 21151129]
  104. PLoS Genet. 2010 Aug 12;6(8):null [PMID: 20714352]
  105. Genes Dev. 2009 Jul 1;23(13):1522-33 [PMID: 19515975]
  106. Cell. 1995 Oct 6;83(1):29-38 [PMID: 7553870]
  107. Science. 2007 Sep 21;317(5845):1760-4 [PMID: 17673620]

MeSH Term

Animals
Chromatin
DNA Methylation
Epigenesis, Genetic
Heterochromatin
Humans
Protein Binding
Transcription Factors

Chemicals

Chromatin
Heterochromatin
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0transcriptionfactorschromatinPioneeruniquedevelopmentpioneercanDNAheterochromatinremodelinglandscapeactionbindingopeningCpGepigeneticdemethylationimportantroleunmaskingdomainsallowimplementationnewcellularprogramsComparedactivityimpliesrecognizetargetsequencesso-calledcompacted"closed"triggeradjoiningprovideaccessibilitynonpioneerRecentstudiesidentifiedseveralstepsnamelyrapidweakinitialstabilizationfollowedlosscytosine-phosphate-guaninemethylationprovidesmemoryWhereasdependsreplicationMinireviewhighlightpropertiesfactorclasschallengesunderstandingmechanismshapecelldifferentiationepigeneticsgene

Similar Articles

Cited By