Maternal modulation of paternal effects on offspring development.

Rahia Mashoodh, Ireneusz B Habrylo, Kathryn M Gudsnuk, Geralyn Pelle, Frances A Champagne
Author Information
  1. Rahia Mashoodh: Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA rm786@cam.ac.uk. ORCID
  2. Ireneusz B Habrylo: Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA.
  3. Kathryn M Gudsnuk: Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA.
  4. Geralyn Pelle: Columbia University Medical Center, 650 W 168 St, New York, NY 10032, USA.
  5. Frances A Champagne: Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA.

Abstract

The paternal transmission of environmentally induced phenotypes across generations has been reported to occur following a number of qualitatively different exposures and appear to be driven, at least in part, by epigenetic factors that are inherited via the sperm. However, previous studies of paternal germline transmission have not addressed the role of mothers in the propagation of paternal effects to offspring. We hypothesized that paternal exposure to nutritional restriction would impact male mate quality and subsequent maternal reproductive investment with consequences for the transmission of paternal germline effects. In the current report, using embryo transfer in mice, we demonstrate that sperm factors in adult food restricted males can influence growth rate, hypothalamic gene expression and behaviour in female offspring. However, under natural mating conditions females mated with food restricted males show increased pre- and postnatal care, and phenotypic outcomes observed during embryo transfer conditions are absent or reversed. We demonstrate that these compensatory changes in maternal investment are associated with a reduced mate preference for food restricted males and elevated gene expression within the maternal hypothalamus. Therefore, paternal experience can influence offspring development via germline inheritance, but mothers can serve as a modulating factor in determining the impact of paternal influences on offspring development.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.4010368

References

  1. Science. 1999 Apr 9;284(5412):330-3 [PMID: 10195900]
  2. J Exp Med. 1976 Nov 2;144(5):1324-35 [PMID: 1032893]
  3. J Psychiatr Res. 1999 May-Jun;33(3):181-214 [PMID: 10367986]
  4. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15239-44 [PMID: 10611369]
  5. Nature. 2000 Mar 2;404(6773):74-7 [PMID: 10716444]
  6. Psychopharmacology (Berl). 2000 Jun;150(2):150-62 [PMID: 10907668]
  7. Trends Ecol Evol. 2000 Oct 1;15(10):397-402 [PMID: 10998516]
  8. Mol Reprod Dev. 2002 Nov;63(3):329-34 [PMID: 12237948]
  9. Genesis. 2003 Feb;35(2):88-93 [PMID: 12533790]
  10. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1595-600 [PMID: 14747652]
  11. Nat Genet. 2004 Aug;36(8):818-26 [PMID: 15273686]
  12. Proc Biol Sci. 2004 Jun 22;271(1545):1303-9 [PMID: 15306355]
  13. Arch Gen Psychiatry. 2005 Jan;62(1):29-36 [PMID: 15630070]
  14. Science. 2005 Jun 3;308(5727):1466-9 [PMID: 15933200]
  15. Eur J Hum Genet. 2006 Feb;14(2):159-66 [PMID: 16391557]
  16. Endocrinology. 2006 Jun;147(6):2909-15 [PMID: 16513834]
  17. Proc Biol Sci. 2006 Jul 22;273(1595):1765-71 [PMID: 16790409]
  18. Early Hum Dev. 2006 Aug;82(8):485-91 [PMID: 16876341]
  19. Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18267-72 [PMID: 17108082]
  20. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5942-6 [PMID: 17389367]
  21. Eur J Hum Genet. 2007 Jul;15(7):784-90 [PMID: 17457370]
  22. Physiol Behav. 2007 Jun 8;91(2-3):325-34 [PMID: 17477940]
  23. Nat Neurosci. 2007 Sep;10(9):1089-93 [PMID: 17726474]
  24. Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15023-7 [PMID: 17848509]
  25. Nat Rev Neurosci. 2008 Jan;9(1):11-25 [PMID: 18073776]
  26. J Neurosci. 2007 Dec 26;27(52):14265-74 [PMID: 18160634]
  27. Heredity (Edinb). 2008 Jun;100(6):594-601 [PMID: 18414506]
  28. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  29. J Neurotrauma. 2008 Jul;25(7):785-94 [PMID: 18627256]
  30. Behav Neurosci. 2008 Oct;122(5):963-73 [PMID: 18823153]
  31. J Autism Dev Disord. 2009 Oct;39(10):1487-92 [PMID: 19452267]
  32. Reprod Toxicol. 2009 Dec;28(4):536-41 [PMID: 19549566]
  33. Biol Psychiatry. 2010 May 1;67(9):864-71 [PMID: 20034613]
  34. Nutr Rev. 2010 Feb;68(2):87-98 [PMID: 20137054]
  35. Nature. 1991 May 2;351(6321):58-60 [PMID: 2027382]
  36. Horm Behav. 2011 Mar;59(3):306-14 [PMID: 20620140]
  37. Biol Psychiatry. 2010 Sep 1;68(5):408-15 [PMID: 20673872]
  38. Biol Reprod. 2010 Dec;83(6):938-50 [PMID: 20702853]
  39. J Neurosci. 2010 Dec 1;30(48):16399-407 [PMID: 21123586]
  40. Biol Psychiatry. 2011 Sep 1;70(5):408-14 [PMID: 21679926]
  41. Biol Psychiatry. 2013 Jan 1;73(1):44-53 [PMID: 22906514]
  42. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16324-9 [PMID: 22988120]
  43. Proc Natl Acad Sci U S A. 2012 Oct 16;109 Suppl 2:17232-8 [PMID: 23045657]
  44. Nat Neurosci. 2013 Jan;16(1):42-7 [PMID: 23242310]
  45. J Neurosci. 2013 May 22;33(21):9003-12 [PMID: 23699511]
  46. Nat Protoc. 2013 Dec;8(12):2531-7 [PMID: 24263092]
  47. Nat Neurosci. 2014 Jan;17(1):89-96 [PMID: 24292232]
  48. Nat Neurosci. 2014 May;17(5):667-9 [PMID: 24728267]
  49. Neuropsychopharmacology. 2015 Jan;40(1):141-53 [PMID: 24917200]
  50. Hum Reprod Update. 2014 Nov-Dec;20(6):840-52 [PMID: 24961233]
  51. Science. 2014 Aug 15;345(6198):1255903 [PMID: 25011554]
  52. Cell. 2014 Jul 17;158(2):277-287 [PMID: 25018105]
  53. Dev Neurobiol. 2015 Oct;75(10):1114-24 [PMID: 25044746]
  54. Horm Behav. 2016 Jan;77:204-10 [PMID: 26172856]
  55. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13699-704 [PMID: 26483456]
  56. Science. 2016 Oct 7;354(6308):59-63 [PMID: 27846492]
  57. Neurosci Biobehav Rev. 1985 Spring;9(1):37-44 [PMID: 2858080]
  58. Psychopharmacology (Berl). 1987;93(3):358-64 [PMID: 3124165]
  59. Nature. 1977 Apr 21;266(5604):730-2 [PMID: 559941]
  60. Proc Biol Sci. 1995 Jul 22;261(1360):31-5 [PMID: 7644547]
  61. Nat Genet. 1998 Oct;20(2):163-9 [PMID: 9771709]

Grants

  1. DP2 OD001674/NIH HHS

MeSH Term

Animals
Female
Food Deprivation
Gene Expression
Growth and Development
Male
Maternal Inheritance
Mice
Mice, Inbred C57BL
Paternal Inheritance
Phenotype
Reproduction

Word Cloud

Created with Highcharts 10.0.0paternaloffspringtransmissiongermlinematernaleffectsembryotransferfoodrestrictedmalescandevelopmentfactorsviaspermHowevermothersimpactmateinvestmentdemonstrateinfluencegeneexpressionbehaviourconditionscareenvironmentallyinducedphenotypesacrossgenerationsreportedoccurfollowingnumberqualitativelydifferentexposuresappeardrivenleastpartepigeneticinheritedpreviousstudiesaddressedrolepropagationhypothesizedexposurenutritionalrestrictionmalequalitysubsequentreproductiveconsequencescurrentreportusingmiceadultgrowthratehypothalamicfemalenaturalmatingfemalesmatedshowincreasedpre-postnatalphenotypicoutcomesobservedabsentreversedcompensatorychangesassociatedreducedpreferenceelevatedwithinhypothalamusThereforeexperienceinheritanceservemodulatingfactordetermininginfluencesMaternalmodulation

Similar Articles

Cited By