Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states.

Ines Mahjoub, Mohamed Ali Mahjoub, Islem Rekik, Alzheimer���s Disease Neuroimaging Initiative
Author Information
  1. Ines Mahjoub: BASIRA lab, CVIP group, School of Science and Engineering, Computing, University of Dundee, Dundee, UK.
  2. Mohamed Ali Mahjoub: LATIS lab, ENISo - National Engineering School of Sousse, Sousse, Tunisia.
  3. Islem Rekik: BASIRA lab, CVIP group, School of Science and Engineering, Computing, University of Dundee, Dundee, UK. irekik@dundee.ac.uk. ORCID

Abstract

Accurate diagnosis of mild cognitive impairment (MCI) before conversion to Alzheimer's disease (AD) is invaluable for patient treatment. Many works showed that MCI and AD affect functional and structural connections between brain regions as well as the shape of cortical regions. However, 'shape connections' between brain regions are rarely investigated -e.g., how morphological attributes such as cortical thickness and sulcal depth of a specific brain region change in relation to morphological attributes in other regions. To fill this gap, we unprecedentedly design morphological brain multiplexes for late MCI/AD classification. Specifically, we use structural T1-w MRI to define morphological brain networks, each quantifying similarity in morphology between different cortical regions for a specific cortical attribute. Then, we define a brain multiplex where each intra-layer represents the morphological connectivity network of a specific cortical attribute, and each inter-layer encodes the similarity between two consecutive intra-layers. A significant performance gain is achieved when using the multiplex architecture in comparison to other conventional network analysis architectures. We also leverage this architecture to discover morphological connectional biomarkers fingerprinting the difference between late MCI and AD stages, which included the right entorhinal cortex and right caudal middle frontal gyrus.

References

  1. Chaos. 2017 Apr;27(4):047401 [PMID: 28456171]
  2. Hippocampus. 2007;17(12):1158-69 [PMID: 17696170]
  3. PLoS One. 2012;7(10):e44877 [PMID: 23071501]
  4. Cereb Cortex. 2004 Jan;14(1):11-22 [PMID: 14654453]
  5. Hum Brain Mapp. 2016 Sep;37(9):3282-96 [PMID: 27144538]
  6. Hippocampus. 1991 Jan;1(1):1-8 [PMID: 1669339]
  7. Neuroimage. 2013 Aug 1;76:332-44 [PMID: 23507382]
  8. Hum Brain Mapp. 2017 May;38(5):2370-2383 [PMID: 28150897]
  9. Front Neurosci. 2017 Feb 28;11:56 [PMID: 28293162]
  10. Hum Brain Mapp. 2013 Dec;34(12):3411-25 [PMID: 22927119]
  11. Prog Neuropsychopharmacol Biol Psychiatry. 2001 May;25(4):835-53 [PMID: 11383980]
  12. Front Aging Neurosci. 2017 Mar 07;9:38 [PMID: 28326033]
  13. Acad Radiol. 2014 May;21(5):597-604 [PMID: 24433704]
  14. Curr Alzheimer Res. 2016;13(5):487-97 [PMID: 26567731]
  15. Comput Intell Neurosci. 2015;2015:865265 [PMID: 26101520]
  16. Chaos. 2017 Apr;27(4):047404 [PMID: 28456158]
  17. J Neurol Neurosurg Psychiatry. 2002 Dec;73(6):657-64 [PMID: 12438466]
  18. Neuroimage. 2005 Oct 1;27(4):934-46 [PMID: 15979341]
  19. Neuroimage. 2008 Oct 15;43(1):103-13 [PMID: 18691657]
  20. Rev Neurosci. 2016 Feb;27(2):185-95 [PMID: 26444348]
  21. Neuroscience. 1995 May;66(1):189-99 [PMID: 7637868]
  22. Alzheimers Dement. 2012 Feb;8(1 Suppl):S1-68 [PMID: 22047634]
  23. Neuroimage. 2012 Jan 16;59(2):1239-48 [PMID: 21884805]
  24. Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii [PMID: 16443497]
  25. PLoS One. 2013;8(2):e55977 [PMID: 23418488]
  26. J Alzheimers Dis. 2013;33(3):755-66 [PMID: 23047370]
  27. Neurology. 2012 Jul 3;79(1):80-4 [PMID: 22722624]
  28. Neuroimage. 2006 Jul 1;31(3):993-1003 [PMID: 16624590]
  29. Radiology. 2009 Apr;251(1):195-205 [PMID: 19201945]
  30. Neural Netw. 2005 Nov;18(9):1141-9 [PMID: 16257175]
  31. Neuroreport. 2001 Mar 26;12(4):683-5 [PMID: 11277563]
  32. J Neurosci. 2005 Sep 7;25(36):8303-10 [PMID: 16148238]
  33. Hum Brain Mapp. 2014 Jul;35(7):2876-97 [PMID: 24038749]
  34. Exp Brain Res. 2001 Dec;141(3):281-303 [PMID: 11715073]
  35. Sci Rep. 2017 Jul 26;7(1):6530 [PMID: 28747782]
  36. Brain Imaging Behav. 2016 Jun;10(2):342-56 [PMID: 26123390]
  37. AJNR Am J Neuroradiol. 2017 May;38(5):961-965 [PMID: 28279988]
  38. Front Neurosci. 2016 Jul 15;10:326 [PMID: 27471443]
  39. Neuroreport. 2002 Oct 28;13(15):1939-43 [PMID: 12395096]
  40. Cereb Cortex. 2009 Mar;19(3):497-510 [PMID: 18632739]
  41. Brain Connect. 2014 Jun;4(5):347-60 [PMID: 24766561]
  42. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]
  43. PLoS One. 2011;6(7):e21935 [PMID: 21818280]
  44. Cereb Cortex. 2014 Jun;24(6):1422-35 [PMID: 23314940]

Grants

  1. P41 EB015922/NIBIB NIH HHS
  2. U01 AG024904/NIA NIH HHS
  3. UL1 TR002369/NCATS NIH HHS

MeSH Term

Alzheimer Disease
Biomarkers
Brain
Cognition Disorders
Humans
Magnetic Resonance Imaging
Models, Neurological

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0brainmorphologicalregionscorticalMCIADspecificlatestructuralattributesmultiplexesdefinesimilarityattributemultiplexnetworkarchitectureconnectionalbiomarkersfingerprintingrightAccuratediagnosismildcognitiveimpairmentconversionAlzheimer'sdiseaseinvaluablepatienttreatmentManyworksshowedaffectfunctionalconnectionswellshapeHowever'shapeconnections'rarelyinvestigated-egthicknesssulcaldepthregionchangerelationfillgapunprecedentedlydesignMCI/ADclassificationSpecificallyuseT1-wMRInetworksquantifyingmorphologydifferentintra-layerrepresentsconnectivityinter-layerencodestwoconsecutiveintra-layerssignificantperformancegainachievedusingcomparisonconventionalanalysisarchitecturesalsoleveragediscoverdifferencestagesincludedentorhinalcortexcaudalmiddlefrontalgyrusBrainrevealdementiastates

Similar Articles

Cited By