High Prevalence of Intra-Familial Co-colonization by Extended-Spectrum Cephalosporin Resistant in Preschool Children and Their Parents in Dutch Households.

Apostolos Liakopoulos, Gerrita van den Bunt, Yvon Geurts, Martin C J Bootsma, Mark Toleman, Daniela Ceccarelli, Wilfrid van Pelt, Dik J Mevius
Author Information
  1. Apostolos Liakopoulos: Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.
  2. Gerrita van den Bunt: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.
  3. Yvon Geurts: Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.
  4. Martin C J Bootsma: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.
  5. Mark Toleman: Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
  6. Daniela Ceccarelli: Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.
  7. Wilfrid van Pelt: Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
  8. Dik J Mevius: Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.

Abstract

Extended-spectrum cephalosporin-resistant (ESC) pose a serious infection control challenge for public health. The emergence of the ESC phenotype is mostly facilitated by plasmid-mediated horizontal extended-spectrum β-lactamases (ESBLs) and AmpC gene transfer within . Current data regarding the plasmid contribution to this emergence within the Dutch human population is limited. Hence, the aim of this study was to gain insight into the role of plasmids in the dissemination of ESBL/AmpC genes inside Dutch households with preschool children and precisely delineate co-colonization. In 87 ESC from fecal samples of parents and preschool children within 66 Dutch households, genomic localization, plasmid type and insertion sequences linked to ESBL/AmpC genes were determined. Chromosomal location of ESBL/AmpC genes was confirmed when needed. An epidemiologically relevant subset of the isolates based on household co-carriage was assessed by Multilocus Sequence Typing and Pulsed-Field Gel Electrophoresis for genetic relatedness. The narrow-host range I1α and F plasmids were the major facilitators of ESBL/AmpC-gene dissemination. Interestingly, we documented a relatively high occurrence of chromosomal integration of typically plasmid-encoded ESBL/AmpC-genes. A high diversity of non-epidemic sequence types (STs) was revealed; the predominant STs belonged to the pandemic lineages of extraintestinal pathogenic ST131 and ST69. Intra-familiar co-carriage by identical ESC was documented in 7 households compared to 14 based on sole gene typing, as previously reported. Co-carriage was more frequent than expected based on pure chance, suggesting clonal transmission between children and parents within the household.

Keywords

References

  1. Infect Control Hosp Epidemiol. 2015 Apr;36(4):394-400 [PMID: 25782893]
  2. Clin Microbiol Rev. 2009 Jan;22(1):161-82, Table of Contents [PMID: 19136439]
  3. J Antimicrob Chemother. 2014 Oct;69(10):2669-75 [PMID: 24879667]
  4. PLoS One. 2015 Jan 14;10(1):e0113033 [PMID: 25587716]
  5. Front Microbiol. 2012 Apr 02;3:110 [PMID: 22485109]
  6. Plasmid. 2012 Jul;68(1):43-50 [PMID: 22470007]
  7. Antimicrob Agents Chemother. 1995 Jun;39(6):1211-33 [PMID: 7574506]
  8. Clin Microbiol Infect. 2017 Jan;23 (1):46.e1-46.e7 [PMID: 27596534]
  9. Clin Microbiol Rev. 2005 Oct;18(4):657-86 [PMID: 16223952]
  10. Curr Pharm Des. 2013;19(2):257-63 [PMID: 22934977]
  11. J Antimicrob Chemother. 2009 Feb;63(2):274-81 [PMID: 19001452]
  12. Antimicrob Agents Chemother. 2009 Jun;53(6):2227-38 [PMID: 19307361]
  13. Clin Microbiol Infect. 2011 Jun;17(6):873-80 [PMID: 21463397]
  14. J Antimicrob Chemother. 2010 Jun;65(6):1155-61 [PMID: 20356905]
  15. Antimicrob Agents Chemother. 2016 Mar 25;60(4):2582-4 [PMID: 26810652]
  16. Trends Ecol Evol. 2013 Aug;28(8):489-95 [PMID: 23706556]
  17. Clin Microbiol Rev. 2013 Oct;26(4):744-58 [PMID: 24092853]
  18. J Antimicrob Chemother. 2008 Jun;61(6):1229-33 [PMID: 18367460]
  19. Clin Infect Dis. 2012 Sep;55(5):712-9 [PMID: 22615330]
  20. J Antimicrob Chemother. 2010 Jul;65(7):1537-9 [PMID: 20466852]
  21. Int J Antimicrob Agents. 2014 Jun;43(6):553-7 [PMID: 24816185]
  22. Clin Microbiol Infect. 2013 Jun;19(6):542-9 [PMID: 22757622]
  23. J Med Microbiol. 2012 Sep;61(Pt 9):1286-9 [PMID: 22683657]
  24. Clin Microbiol Infect. 2015 Oct;21(10):917-23 [PMID: 26033669]
  25. Clin Microbiol Infect. 2015 Jun;21(6):570.e1-4 [PMID: 25749563]
  26. Anal Biochem. 1995 Apr 10;226(2):235-40 [PMID: 7793624]
  27. Antimicrob Resist Infect Control. 2016 Mar 08;5:8 [PMID: 26962447]
  28. Pediatr Crit Care Med. 2013 Feb;14(2):157-63 [PMID: 23254982]
  29. Foodborne Pathog Dis. 2006 Spring;3(1):59-67 [PMID: 16602980]
  30. Clin Infect Dis. 2012 Oct;55(7):967-75 [PMID: 22718774]
  31. J Antimicrob Chemother. 2013 May;68(5):1043-8 [PMID: 23288401]
  32. Lancet Infect Dis. 2017 Jan;17 (1):78-85 [PMID: 27751772]
  33. Antimicrob Agents Chemother. 2011 Jul;55(7):3576-8 [PMID: 21502612]
  34. Clin Microbiol Infect. 2014 May;20(5):380-90 [PMID: 24766445]
  35. J Antimicrob Chemother. 2011 Sep;66(9):1987-91 [PMID: 21653604]
  36. PLoS One. 2012;7(12):e52102 [PMID: 23284886]
  37. Emerg Infect Dis. 2011 Jul;17(7):1216-22 [PMID: 21762575]
  38. Mol Microbiol. 2006 Jun;60(5):1136-51 [PMID: 16689791]
  39. J Clin Microbiol. 2008 Aug;46(8):2796-9 [PMID: 18562591]
  40. PLoS One. 2015 Jun 01;10(6):e0129085 [PMID: 26029910]
  41. PLoS One. 2016 Jul 27;11(7):e0160156 [PMID: 27463231]
  42. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321-31 [PMID: 6109327]
  43. Int J Antimicrob Agents. 2013 Dec;42(6):500-6 [PMID: 24091130]
  44. J Infect. 2010 Apr;60(4):286-92 [PMID: 20144898]
  45. J Antimicrob Chemother. 2004 Jul;54(1):69-75 [PMID: 15163647]
  46. J Clin Microbiol. 2005 Aug;43(8):4178-82 [PMID: 16081970]
  47. J Antimicrob Chemother. 2017 May 1;72 (5):1310-1313 [PMID: 28158613]
  48. J Clin Microbiol. 2005 Mar;43(3):1045-50 [PMID: 15750058]
  49. J Antimicrob Chemother. 2010 May;65(5):859-65 [PMID: 20233775]
  50. J Antimicrob Chemother. 2010 Dec;65(12):2518-29 [PMID: 20935300]
  51. Emerg Infect Dis. 2016 Jul;22(7):1257-61 [PMID: 27314180]
  52. J Antimicrob Chemother. 2016 Apr;71(4):1076-82 [PMID: 26755493]
  53. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6874-8 [PMID: 8341713]
  54. J Antimicrob Chemother. 2017 Feb;72 (2):589-595 [PMID: 27789683]

Word Cloud

Created with Highcharts 10.0.0ESCwithinDutchESBL/AmpCplasmidgeneshouseholdschildrenbasedhouseholdco-carriageemergencegeneplasmidsdisseminationpreschoolparentsinsertiondocumentedhighsequenceSTsExtended-spectrumcephalosporin-resistantposeseriousinfectioncontrolchallengepublichealthphenotypemostlyfacilitatedplasmid-mediatedhorizontalextended-spectrumβ-lactamasesESBLsAmpCtransferCurrentdataregardingcontributionhumanpopulationlimitedHenceaimstudygaininsightroleinsidepreciselydelineateco-colonization87fecalsamples66genomiclocalizationtypesequenceslinkeddeterminedChromosomallocationconfirmedneededepidemiologicallyrelevantsubsetisolatesassessedMultilocusSequenceTypingPulsed-FieldGelElectrophoresisgeneticrelatednessnarrow-hostrangeI1αFmajorfacilitatorsESBL/AmpC-geneInterestinglyrelativelyoccurrencechromosomalintegrationtypicallyplasmid-encodedESBL/AmpC-genesdiversitynon-epidemictypesrevealedpredominantbelongedpandemiclineagesextraintestinalpathogenicST131ST69Intra-familiaridentical7compared14soletypingpreviouslyreportedCo-carriagefrequentexpectedpurechancesuggestingclonaltransmissionHighPrevalenceIntra-FamilialCo-colonizationExtended-SpectrumCephalosporinResistantPreschoolChildrenParentsHouseholdsEscherichiacoliNetherlands

Similar Articles

Cited By