Key Players of Cisplatin Resistance: Towards a Systems Pharmacology Approach.

Navin Sarin, Florian Engel, Florian Rothweiler, Jindrich Cinatl, Martin Michaelis, Roland Frötschl, Holger Fröhlich, Ganna V Kalayda
Author Information
  1. Navin Sarin: Institute of Pharmacy, Clinical Pharmacy, University of Bonn, 53121 Bonn, Germany. n.sarin@uni-bonn.de.
  2. Florian Engel: Federal Institute for Drugs and Medical Devices (BfArM), 53175 Bonn, Germany. engel_florian@hotmail.de.
  3. Florian Rothweiler: Institute of Medical Virology, Goethe University Hospital Frankfurt, 60596 Frankfurt/Main, Germany. f.rothweiler@kinderkrebsstiftung-frankfurt.de.
  4. Jindrich Cinatl: Institute of Medical Virology, Goethe University Hospital Frankfurt, 60596 Frankfurt/Main, Germany. cinatl@em.uni-frankfurt.de.
  5. Martin Michaelis: Industrial Biotechnology Centre and School of Biosciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK. M.Michaelis@kent.ac.uk.
  6. Roland Frötschl: Federal Institute for Drugs and Medical Devices (BfArM), 53175 Bonn, Germany. Roland.Froetschl@bfarm.de. ORCID
  7. Holger Fröhlich: Bonn-Aachen International Center for IT (b-it), Life Science Data Analytics & Algorithmic Bioinformatics, University of Bonn, 53115 Bonn, Germany. frohlich@bit.uni-bonn.de. ORCID
  8. Ganna V Kalayda: Institute of Pharmacy, Clinical Pharmacy, University of Bonn, 53121 Bonn, Germany. akalayda@uni-bonn.de. ORCID

Abstract

The major obstacle in the clinical use of the antitumor drug cisplatin is inherent and acquired resistance. Typically, cisplatin resistance is not restricted to a single mechanism demanding for a systems pharmacology approach to understand a whole cell's reaction to the drug. In this study, the cellular transcriptome of untreated and cisplatin-treated A549 non-small cell lung cancer cells and their cisplatin-resistant sub-line A549CDDP was screened with a whole genome array for relevant gene candidates. By combining statistical methods with available gene annotations and without a previously defined hypothesis (p38) and were identified as genes possibly relevant for cisplatin resistance. These and related genes were further validated on transcriptome (qRT-PCR) and proteome (Western blot) level to select candidates contributing to resistance. HRas, p38, CCL2, DOK1, PTK2B and JNK3 were integrated into a model of resistance-associated signalling alterations describing differential gene and protein expression between cisplatin-sensitive and -resistant cells in reaction to cisplatin exposure.

Keywords

References

  1. Oncotarget. 2015 Sep 15;6(27):23510-22 [PMID: 26155939]
  2. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  3. PLoS One. 2017 Jan 23;12 (1):e0170609 [PMID: 28114404]
  4. EMBO Mol Med. 2013 Nov;5(11):1759-74 [PMID: 24115572]
  5. Int J Mol Sci. 2011;12 (6):3489-99 [PMID: 21747690]
  6. Anticancer Res. 2010 Dec;30(12):4791-8 [PMID: 21187454]
  7. Clin Cancer Res. 2002 Aug;8(8):2475-9 [PMID: 12171872]
  8. Cell Death Dis. 2011 Dec 15;2:e243 [PMID: 22170099]
  9. Immunol Rev. 2009 Nov;232(1):273-85 [PMID: 19909370]
  10. Mol Cancer Ther. 2012 Mar;11(3):561-71 [PMID: 22053010]
  11. Cell Cycle. 2012 Sep 15;11(18):3472-80 [PMID: 22918244]
  12. Clin Cancer Res. 2014 Feb 1;20(3):658-67 [PMID: 24277456]
  13. Cancer Res. 2008 Mar 1;68(5):1581-92 [PMID: 18316624]
  14. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61 [PMID: 14681407]
  15. Mol Oncol. 2011 Oct;5(5):438-53 [PMID: 21856257]
  16. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):861-6 [PMID: 9023347]
  17. J Chemother. 2013 Jun;25(3):162-9 [PMID: 23783141]
  18. Biochem Biophys Res Commun. 2014 Feb 21;444(4):670-5 [PMID: 24502949]
  19. Oncol Rep. 2013 Aug;30(2):596-614 [PMID: 23733047]
  20. BMC Cancer. 2015 Oct 16;15:722 [PMID: 26475474]
  21. Cancer Res. 2011 Nov 15;71(22):6976-85 [PMID: 21975929]
  22. Bioinformatics. 2003 Jan 22;19(2):185-93 [PMID: 12538238]
  23. Biomed Res Int. 2017;2017:7498151 [PMID: 29279851]
  24. Int J Cancer. 1996 Sep 27;68(1):67-74 [PMID: 8895543]
  25. Proc Natl Acad Sci U S A. 2012 Oct 23;109 (43):E2939-48 [PMID: 23019585]
  26. Mol Cell Proteomics. 2006 Mar;5(3):433-43 [PMID: 16319398]
  27. Cell Mol Life Sci. 2000 Aug;57(8-9):1229-35 [PMID: 11028915]
  28. J Neuroimmunol. 2008 Aug 13;199(1-2):94-103 [PMID: 18584881]
  29. Cancer Chemother Pharmacol. 2006 Sep;58(3):384-95 [PMID: 16404635]
  30. Cancer Detect Prev. 2007;31(5):366-70 [PMID: 18035504]
  31. Bioinformatics. 2004 Jan 1;20(1):93-9 [PMID: 14693814]
  32. Bioinformatics. 2007 Oct 15;23(20):2700-7 [PMID: 17720982]
  33. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  34. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10541-6 [PMID: 9724739]
  35. Cancer Lett. 2015 Feb 28;357(2):520-6 [PMID: 25499080]
  36. Cell Death Dis. 2014 May 29;5:e1257 [PMID: 24874729]
  37. Bioinformatics. 2011 Mar 15;27(6):879-80 [PMID: 21258062]
  38. Cancer Lett. 2004 Jul 28;211(1):69-78 [PMID: 15194218]
  39. FEBS Lett. 2009 Dec 17;583(24):3966-73 [PMID: 19850042]
  40. Cancer Biol Ther. 2004 Feb;3(2):156-61 [PMID: 14764989]
  41. Nature. 1991 Dec 12;354(6353):494-6 [PMID: 1749429]
  42. J Biol Chem. 2001 Feb 2;276(5):3517-23 [PMID: 11042204]
  43. J Pathol. 2009 May;218(1):95-103 [PMID: 19206150]
  44. Oncotarget. 2014 Mar 30;5(6):1392-433 [PMID: 24722523]
  45. Biochim Biophys Acta. 2007 Aug;1773(8):1358-75 [PMID: 17481747]
  46. Genome Med. 2009 Jan 22;1(1):11 [PMID: 19348698]
  47. PLoS One. 2011;6(11):e27362 [PMID: 22096562]
  48. PLoS One. 2015 Sep 09;10(9):e0136893 [PMID: 26351843]
  49. Cell Rep. 2012 Aug 30;2(2):257-69 [PMID: 22854025]
  50. Cancer Res. 2000 May 1;60(9):2464-72 [PMID: 10811125]
  51. Nat Genet. 2008 Oct;40(10):1240-4 [PMID: 18758463]
  52. J Biol Chem. 2000 Dec 15;275(50):39435-43 [PMID: 10993883]
  53. Cancer Res. 1988 Feb 15;48(4):793-7 [PMID: 3276398]
  54. PLoS One. 2013 May 31;8(5):e65309 [PMID: 23741487]
  55. Am J Physiol Renal Physiol. 2013 Apr 1;304(7):F938-47 [PMID: 23364805]
  56. Nature. 1991 May 9;351(6322):122-7 [PMID: 1903181]
  57. Nat Rev Cancer. 2009 Aug;9(8):537-49 [PMID: 19629069]
  58. PLoS One. 2017 Jul 26;12 (7):e0181081 [PMID: 28746345]
  59. J Proteome Res. 2017 Nov 3;16(11):4227-4236 [PMID: 28902521]
  60. Cell Mol Life Sci. 2004 Sep;61(17):2253-63 [PMID: 15338055]
  61. J Biol Chem. 2010 Jan 15;285(3):1743-53 [PMID: 19880522]
  62. Int J Cancer. 2008 Nov 1;123(9):2031-40 [PMID: 18697197]
  63. Mol Pharmacol. 2001 Dec;60(6):1153-60 [PMID: 11723219]
  64. Ann Oncol. 2014 Aug;25(8):1475-84 [PMID: 24669016]

MeSH Term

Antineoplastic Agents
Biomarkers
Cell Line, Tumor
Cisplatin
Computational Biology
Drug Resistance, Neoplasm
Gene Ontology
Genomics
Humans
Pharmacogenetics
Signal Transduction
Systems Biology
Workflow

Chemicals

Antineoplastic Agents
Biomarkers
Cisplatin

Word Cloud

Created with Highcharts 10.0.0cisplatinresistancegenep38drugwholereactioncellulartranscriptomecellsrelevantcandidatesgenesHRasCCL2DOK1PTK2BJNK3signallingmajorobstacleclinicaluseantitumorinherentacquiredTypicallyrestrictedsinglemechanismdemandingsystemspharmacologyapproachunderstandcell'sstudyuntreatedcisplatin-treatedA549non-smallcelllungcancercisplatin-resistantsub-lineA549CDDPscreenedgenomearraycombiningstatisticalmethodsavailableannotationswithoutpreviouslydefinedhypothesisidentifiedpossiblyrelatedvalidatedqRT-PCRproteomeWesternblotlevelselectcontributingintegratedmodelresistance-associatedalterationsdescribingdifferentialproteinexpressioncisplatin-sensitive-resistantexposureKeyPlayersCisplatinResistance:TowardsSystemsPharmacologyApproach

Similar Articles

Cited By