Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

Renee Miller, Arunark Kolipaka, Martyn P Nash, Alistair A Young
Author Information
  1. Renee Miller: Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand. ORCID
  2. Arunark Kolipaka: Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
  3. Martyn P Nash: Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
  4. Alistair A Young: Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.

Abstract

Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry.

Keywords

References

  1. J Comput Phys. 2013 Jul 1;244:4-21 [PMID: 23729839]
  2. Magn Reson Med. 2009 Jul;62(1):135-40 [PMID: 19353657]
  3. J Magn Reson Imaging. 2011 May;33(5):1224-8 [PMID: 21509882]
  4. Magn Reson Med. 2012 Apr;67(4):919-24 [PMID: 22294295]
  5. Magn Reson Med. 2017 Dec;78(6):2360-2372 [PMID: 28097687]
  6. J Magn Reson Imaging. 2017 Mar;45(3):813-820 [PMID: 27564862]
  7. Heart. 2006 May;92(5):712-8 [PMID: 16614298]
  8. Radiology. 2014 Jun;271(3):681-7 [PMID: 24475861]
  9. IEEE Trans Med Imaging. 2011 Feb;30(2):295-305 [PMID: 20851788]
  10. J Magn Reson Imaging. 2012 Jul;36(1):120-7 [PMID: 22334349]
  11. J Mech Behav Biomed Mater. 2016 Jun;59:538-546 [PMID: 27032311]
  12. J Biomech. 2016 May 3;49(7):1042-1049 [PMID: 26920505]
  13. J Mech Behav Biomed Mater. 2013 Jul;23 :117-32 [PMID: 23680651]
  14. J Magn Reson Imaging. 2017 Apr;45(4):1024-1033 [PMID: 27533317]
  15. Magn Reson Med. 2016 Apr;75(4):1586-93 [PMID: 26010456]
  16. Med Image Anal. 2009 Oct;13(5):773-84 [PMID: 19664952]
  17. J Cardiovasc Magn Reson. 2009 Nov 09;11:44 [PMID: 19900266]
  18. Med Image Anal. 2003 Dec;7(4):465-73 [PMID: 14561551]
  19. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(3):751-9 [PMID: 18244226]
  20. Med Image Anal. 2013 Feb;17(2):133-46 [PMID: 23153619]
  21. Magn Reson Med. 2006 Sep;56(3):489-97 [PMID: 16894586]
  22. Phys Med Biol. 2016 Jul 7;61(13):5000-19 [PMID: 27300107]
  23. Med Image Anal. 2001 Dec;5(4):237-54 [PMID: 11731304]
  24. Phys Med Biol. 2014 Nov 21;59(22):6923-40 [PMID: 25350315]
  25. Magn Reson Med. 2009 Sep;62(3):691-8 [PMID: 19572388]
  26. J Magn Reson Imaging. 2016 May;43(5):1055-63 [PMID: 26494224]
  27. Magn Reson Med. 2018 Jan;79(1):361-369 [PMID: 28382658]
  28. Magn Reson Med. 2016 Apr;75(4):1537-45 [PMID: 25988407]
  29. Science. 1995 Sep 29;269(5232):1854-7 [PMID: 7569924]
  30. Am J Physiol Heart Circ Physiol. 2002 Dec;283(6):H2650-9 [PMID: 12427603]
  31. Magn Reson Med. 2014 Dec;72(6):1755-61 [PMID: 24347290]
  32. J Biomech. 2015 Nov 26;48(15):4002-9 [PMID: 26476762]
  33. Magn Reson Med. 1995 Dec;34(6):910-4 [PMID: 8598820]
  34. Phys Med Biol. 2010 Nov 7;55(21):6445-59 [PMID: 20952814]
  35. J Magn Reson Imaging. 2013 Jan;37(1):217-26 [PMID: 22987805]
  36. Magn Reson Med. 2014 May;71(5):1682-8 [PMID: 24648402]
  37. J Magn Reson Imaging. 2012 Oct;36(4):757-74 [PMID: 22987755]
  38. J Cardiovasc Magn Reson. 2010 Oct 27;12:60 [PMID: 20979648]
  39. Radiology. 2014 Dec;273(3):726-35 [PMID: 25105354]
  40. J Biomech. 2009 Sep 18;42(13):2047-53 [PMID: 19656516]
  41. Magn Reson Med. 2009 Mar;61(3):668-77 [PMID: 19097236]
  42. NMR Biomed. 2013 Nov;26(11):1387-94 [PMID: 23640745]
  43. Magn Reson Med. 2012 Nov;68(5):1410-22 [PMID: 22252792]
  44. Invest Radiol. 2010 Dec;45(12):782-7 [PMID: 20829709]
  45. Strain. 2015 Apr;51(2):110-134 [PMID: 26146416]
  46. Am J Physiol Heart Circ Physiol. 2012 Dec 1;303(11):H1353-65 [PMID: 23001837]
  47. N Engl J Med. 2004 May 6;350(19):1953-9 [PMID: 15128895]
  48. NMR Biomed. 2017 Nov 6;: [PMID: 29106765]
  49. Am J Physiol. 1995 Aug;269(2 Pt 2):H571-82 [PMID: 7653621]

Grants

  1. R01 HL121754/NHLBI NIH HHS
  2. R01 HL124096/NHLBI NIH HHS

MeSH Term

Elasticity Imaging Techniques
Heart Ventricles
Humans
Magnetic Resonance Imaging
Models, Cardiovascular

Word Cloud

Created with Highcharts 10.0.0isotropicmaterialtransverselypropertiesstiffnessresonanceelastographyMREvirtualfieldsmethodVFMLVmodelmyocardialestimatingdataappliedoptimisedidentifysimulatedharmonicdisplacementswellphantomparametersnoiseshowedusingmagneticMagneticusedestimateHoweveranisotropicestimatesmaygiveinsightstructuralchangesoccurmyocardiumresultpathologiesdiastolicheartfailureproposedimagestudyleftventricularfibrefieldmeasuredhistologyTwoformulationsimplementedeither353-parameterformulationwritesconstitutiverelationwaydissociatesbulkmodulusAccurateidentificationshowndependentloadingconditionamountGaussiansignalfrequencyexcitationParametersensitivityvaluesshearmodulilesssensitivepreliminaryinvestigationfeasibilitylimitationsimagesgeometryEstimationinversemethodstransverseisotropy

Similar Articles

Cited By (6)