Recovery from supercooling, freezing, and cryopreservation stress in larvae of the drosophilid fly, Chymomyza costata.

Tomáš Štětina, Petr Hůla, Martin Moos, Petr Šimek, Petr Šmilauer, Vladimír Koštál
Author Information
  1. Tomáš Štětina: Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
  2. Petr Hůla: Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
  3. Martin Moos: Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
  4. Petr Šimek: Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
  5. Petr Šmilauer: Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
  6. Vladimír Koštál: Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic. kostal@entu.cas.cz.

Abstract

Physiological adjustments accompanying insect cold acclimation prior to cold stress have been relatively well explored. In contrast, recovery from cold stress received much less attention. Here we report on recovery of drosophilid fly larvae (Chymomyza costata) from three different levels of cold stress: supercooling to -10 °C, freezing at -30 °C, and cryopreservation at -196 °C. Analysis of larval CO production suggested that recovery from all three cold stresses requires access to additional energy reserves to support cold-injury repair processes. Metabolomic profiling (targeting 41 metabolites using mass spectrometry) and custom microarray analysis (targeting 1,124 candidate mRNA sequences) indicated that additional energy was needed to: clear by-products of anaerobic metabolism, deal with oxidative stress, re-fold partially denatured proteins, and remove damaged proteins, complexes and/or organelles. Metabolomic and transcriptomic recovery profiles were closely similar in supercooled and frozen larvae, most of which successfully repaired the cold injury and metamorphosed into adults. In contrast, the majority of cryopreseved larvae failed to proceed in ontogenesis, showed specific metabolic perturbations suggesting impaired mitochondrial function, and failed to up-regulate a set of 116 specific genes potentially linked to repair of cold injury.

References

  1. Science. 1972 Dec 8;178(4065):1056-60 [PMID: 5086835]
  2. PLoS One. 2009;4(2):e4546 [PMID: 19229329]
  3. J Neurosci Res. 2013 Aug;91(8):1030-43 [PMID: 23378250]
  4. Cell Death Differ. 2007 Jun;14(6):1181-90 [PMID: 17363962]
  5. Comp Biochem Physiol A Mol Integr Physiol. 2011 Feb;158(2):229-34 [PMID: 21074633]
  6. Cell Stress Chaperones. 2006 Spring;11(1):51-60 [PMID: 16572729]
  7. J Biol Chem. 2000 Oct 6;275(40):31204-10 [PMID: 10896659]
  8. EMBO Rep. 2001 Oct;2(10):885-90 [PMID: 11600451]
  9. Sci Rep. 2016 Aug 30;6:32346 [PMID: 27573891]
  10. J Insect Physiol. 2000 Apr;46(4):417-428 [PMID: 12770205]
  11. J Mol Biol. 2015 Apr 10;427(7):1537-48 [PMID: 25681016]
  12. Comp Biochem Physiol B Biochem Mol Biol. 2006 Feb;143(2):171-9 [PMID: 16364670]
  13. Trends Endocrinol Metab. 2015 Sep;26(9):477-85 [PMID: 26242817]
  14. FEBS J. 2009 Sep;276(17):4946-58 [PMID: 19694807]
  15. Annu Rev Genet. 1988;22:631-77 [PMID: 2853609]
  16. J Insect Physiol. 2016 Jun;89:19-27 [PMID: 27039031]
  17. BMC Genomics. 2015 Sep 21;16:720 [PMID: 26391666]
  18. Proc Biol Sci. 2010 Mar 22;277(1683):963-9 [PMID: 19939842]
  19. Science. 1986 Jan 17;231(4735):234-41 [PMID: 2417316]
  20. Sci Rep. 2015 Dec 18;5:18607 [PMID: 26678786]
  21. Autophagy. 2010 Jan;6(1):163-5 [PMID: 20009534]
  22. Cryobiology. 2004 Apr;48(2):126-33 [PMID: 15094089]
  23. Cryobiology. 1989 Jun;26(3):285-9 [PMID: 2743790]
  24. J Exp Biol. 2004 Apr;207(Pt 9):1509-21 [PMID: 15037645]
  25. J Insect Physiol. 2006 Feb;52(2):113-27 [PMID: 16332347]
  26. Amino Acids. 2015 Dec;47(12 ):2665-70 [PMID: 26386564]
  27. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  28. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  29. Curr Opin Insect Sci. 2014 Oct;4:35-41 [PMID: 28043406]
  30. Insect Mol Biol. 2007 Aug;16(4):435-43 [PMID: 17506850]
  31. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11130-7 [PMID: 17522254]
  32. J Insect Physiol. 1998 Dec;44(12):1233-1239 [PMID: 12770323]
  33. J Insect Physiol. 2018 Jan;104:15-24 [PMID: 29133228]
  34. Annu Rev Physiol. 2017 Feb 10;79:187-208 [PMID: 27860831]
  35. J Insect Physiol. 2001 Jun;47(6):585-592 [PMID: 11249946]
  36. J Clin Invest. 1955 Jan;34(1):126-31 [PMID: 13221663]
  37. Semin Immunopathol. 2010 Dec;32(4):363-72 [PMID: 20798940]
  38. Science. 1969 Oct 3;166(3901):105-6 [PMID: 5809585]
  39. J Exp Biol. 2011 Mar 1;214(Pt 5):726-34 [PMID: 21307058]
  40. Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2355-72 [PMID: 16321806]
  41. PLoS One. 2015 Jun 02;10(6):e0128976 [PMID: 26034990]
  42. J Insect Physiol. 2006 Nov-Dec;52(11-12):1226-33 [PMID: 17078965]
  43. Methods. 2015 Mar;75:151-61 [PMID: 25481477]
  44. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13041-6 [PMID: 21788482]
  45. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8532-8537 [PMID: 28720705]
  46. Apoptosis. 2007 Jul;12(7):1183-93 [PMID: 17245639]
  47. J Exp Biol. 2001 Sep;204(Pt 18):3171-81 [PMID: 11581331]
  48. FEBS J. 2010 Jan;277(1):174-85 [PMID: 19968716]
  49. J Insect Physiol. 2005 Dec;51(12):1320-9 [PMID: 16169555]
  50. J Exp Biol. 2015 Jun;218(Pt 12):1846-55 [PMID: 26085662]

MeSH Term

Animals
Cold-Shock Response
Cryopreservation
Drosophilidae
Freezing
Gene Expression Profiling
Larva
Metabolomics
Preservation, Biological
Stress, Physiological

Word Cloud

Created with Highcharts 10.0.0coldstressrecoverylarvaecontrastdrosophilidflyChymomyzacostatathreesupercoolingfreezingcryopreservationadditionalenergyrepairMetabolomictargetingproteinsinjuryfailedspecificPhysiologicaladjustmentsaccompanyinginsectacclimationpriorrelativelywellexploredreceivedmuchlessattentionreportdifferentlevelsstress:-10 °C-30 °C-196 °CAnalysislarvalCOproductionsuggestedstressesrequiresaccessreservessupportcold-injuryprocessesprofiling41metabolitesusingmassspectrometrycustommicroarrayanalysis1124candidatemRNAsequencesindicatedneededto:clearby-productsanaerobicmetabolismdealoxidativere-foldpartiallydenaturedremovedamagedcomplexesand/ororganellestranscriptomicprofilescloselysimilarsupercooledfrozensuccessfullyrepairedmetamorphosedadultsmajoritycryopresevedproceedontogenesisshowedmetabolicperturbationssuggestingimpairedmitochondrialfunctionup-regulateset116genespotentiallylinkedRecovery

Similar Articles

Cited By (9)