Computational Methods for Estimating Molecular System from Membrane Potential Recordings in Nerve Growth Cone.

Tatsuya Yamada, Makoto Nishiyama, Shigeyuki Oba, Henri Claver Jimbo, Kazushi Ikeda, Shin Ishii, Kyonsoo Hong, Yuichi Sakumura
Author Information
  1. Tatsuya Yamada: Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan.
  2. Makoto Nishiyama: Department of Biochemistry, New York University School of Medicine, New York, USA.
  3. Shigeyuki Oba: Graduate School of Informatics, Kyoto University, Kyoto, Japan.
  4. Henri Claver Jimbo: Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.
  5. Kazushi Ikeda: Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan. ORCID
  6. Shin Ishii: Graduate School of Informatics, Kyoto University, Kyoto, Japan.
  7. Kyonsoo Hong: Department of Biochemistry, New York University School of Medicine, New York, USA. kyonsoo.hong@kasahtechnology.com.
  8. Yuichi Sakumura: Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan. saku@bs.naist.jp. ORCID

Abstract

Biological cells express intracellular biomolecular information to the extracellular environment as various physical responses. We show a novel computational approach to estimate intracellular biomolecular pathways from growth cone electrophysiological responses. Previously, it was shown that cGMP signaling regulates membrane potential (MP) shifts that control the growth cone turning direction during neuronal development. We present here an integrated deterministic mathematical model and Bayesian reversed-engineering framework that enables estimation of the molecular signaling pathway from electrical recordings and considers both the system uncertainty and cell-to-cell variability. Our computational method selects the most plausible molecular pathway from multiple candidates while satisfying model simplicity and considering all possible parameter ranges. The model quantitatively reproduces MP shifts depending on cGMP levels and MP variability potential in different experimental conditions. Lastly, our model predicts that chloride channel inhibition by cGMP-dependent protein kinase (PKG) is essential in the core system for regulation of the MP shifts.

References

  1. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9574-8 [PMID: 2556718]
  2. Front Bioeng Biotechnol. 2014 May 20;2:13 [PMID: 25152886]
  3. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10296-301 [PMID: 19541606]
  4. Nature. 2010 Oct 7;467(7316):673-7 [PMID: 20930838]
  5. Cell. 2016 Mar 24;165(1):220-233 [PMID: 26949187]
  6. Nat Neurosci. 2001 Nov;4 Suppl:1169-76 [PMID: 11687826]
  7. Nature. 1953 Apr 25;171(4356):737-8 [PMID: 13054692]
  8. Nat Neurosci. 2008 Jul;11(7):762-71 [PMID: 18536712]
  9. Nature. 2005 Apr 14;434(7035):898-904 [PMID: 15758951]
  10. Science. 1996 Nov 15;274(5290):1123-33 [PMID: 8895455]
  11. Nat Genet. 2005 Apr;37(4):382-90 [PMID: 15778709]
  12. Neuron. 2012 May 10;74(3):490-503 [PMID: 22578501]
  13. J Neurosci. 2009 Jun 17;29(24):7886-97 [PMID: 19535600]
  14. Nature. 2003 Jun 26;423(6943):990-5 [PMID: 12827203]
  15. Sensors (Basel). 2017 Feb 04;17 (2): [PMID: 28165388]
  16. Blood. 2006 Feb 1;107(3):965-72 [PMID: 16210341]
  17. J Neurosci. 1996 Feb 1;16(3):1140-9 [PMID: 8558243]
  18. BMC Syst Biol. 2016 Aug 22;10 (1):81 [PMID: 27549182]
  19. J Neurosci. 2008 Mar 19;28(12 ):3190-201 [PMID: 18354022]
  20. J Physiol. 1952 Aug;117(4):500-44 [PMID: 12991237]
  21. Annu Rev Physiol. 2010;72:95-121 [PMID: 19827947]
  22. J R Soc Interface. 2009 Feb 6;6(31):187-202 [PMID: 19205079]
  23. Front Mol Neurosci. 2012 Mar 22;5:35 [PMID: 22461766]
  24. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15190-5 [PMID: 21876136]
  25. J Comput Neurosci. 2010 Aug;29(1-2):107-126 [PMID: 19649698]
  26. Science. 1998 Sep 4;281(5382):1515-8 [PMID: 9727979]
  27. Anesthesiology. 2005 Oct;103(4):828-36 [PMID: 16192776]
  28. Science. 2014 Dec 12;346(6215):1370-3 [PMID: 25504722]
  29. Nat Rev Neurosci. 2006 Feb;7(2):115-25 [PMID: 16429121]
  30. Cell Rep. 2016 Jun 14;15(11):2524-35 [PMID: 27264188]
  31. Am J Physiol Cell Physiol. 2003 Feb;284(2):C339-48 [PMID: 12388102]
  32. Nat Protoc. 2014 Feb;9(2):439-56 [PMID: 24457334]
  33. Nat Neurosci. 2002 Sep;5(9):843-8 [PMID: 12161754]
  34. J R Soc Interface. 2017 Aug;14 (133):null [PMID: 28768879]
  35. Nat Neurosci. 2006 Oct;9(10):1265-73 [PMID: 16980965]
  36. Nat Cell Biol. 2001 Mar;3(3):E81-8 [PMID: 11231595]
  37. Annu Rev Neurosci. 1996;19:341-77 [PMID: 8833447]
  38. J R Soc Interface. 2017 Jun;14 (131):null [PMID: 28615495]
  39. Neuron. 2008 Jun 12;58(5):694-707 [PMID: 18549782]
  40. Physiol Rev. 2002 Jul;82(3):769-824 [PMID: 12087135]
  41. J Neurosci. 1998 Sep 15;18(18):7411-25 [PMID: 9736661]
  42. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10215-20 [PMID: 12096192]

MeSH Term

Animals
Bayes Theorem
Computational Biology
Cyclic GMP
Growth Cones
Membrane Potentials
Models, Theoretical
Xenopus

Chemicals

Cyclic GMP

Word Cloud

Created with Highcharts 10.0.0MPmodelshiftsintracellularbiomolecularresponsescomputationalgrowthconecGMPsignalingpotentialmolecularpathwaysystemvariabilityBiologicalcellsexpressinformationextracellularenvironmentvariousphysicalshownovelapproachestimatepathwayselectrophysiologicalPreviouslyshownregulatesmembranecontrolturningdirectionneuronaldevelopmentpresentintegrateddeterministicmathematicalBayesianreversed-engineeringframeworkenablesestimationelectricalrecordingsconsidersuncertaintycell-to-cellmethodselectsplausiblemultiplecandidatessatisfyingsimplicityconsideringpossibleparameterrangesquantitativelyreproducesdependinglevelsdifferentexperimentalconditionsLastlypredictschloridechannelinhibitioncGMP-dependentproteinkinasePKGessentialcoreregulationComputationalMethodsEstimatingMolecularSystemMembranePotentialRecordingsNerveGrowthCone

Similar Articles

Cited By

No available data.