Single-cell RNA sequencing reveals gene expression signatures of breast cancer-associated endothelial cells.

Zhengda Sun, Chih-Yang Wang, Devon A Lawson, Serena Kwek, Hugo Gonzalez Velozo, Mark Owyong, Ming-Derg Lai, Lawrence Fong, Mark Wilson, Hua Su, Zena Werb, Daniel L Cooke
Author Information
  1. Zhengda Sun: Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
  2. Chih-Yang Wang: Department of Anatomy, University of California, San Francisco, CA 94143, USA.
  3. Devon A Lawson: Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
  4. Serena Kwek: Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA.
  5. Hugo Gonzalez Velozo: Department of Anatomy, University of California, San Francisco, CA 94143, USA.
  6. Mark Owyong: Department of Anatomy, University of California, San Francisco, CA 94143, USA.
  7. Ming-Derg Lai: Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
  8. Lawrence Fong: Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA 94143, USA.
  9. Mark Wilson: Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
  10. Hua Su: Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.
  11. Zena Werb: Department of Anatomy, University of California, San Francisco, CA 94143, USA.
  12. Daniel L Cooke: Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.

Abstract

Tumor endothelial cells (TEC) play an indispensible role in tumor growth and metastasis although much of the detailed mechanism still remains elusive. In this study we characterized and compared the global gene expression profiles of TECs and control ECs isolated from human breast cancerous tissues and reduction mammoplasty tissues respectively by single cell RNA sequencing (scRNA-seq). Based on the qualified scRNA-seq libraries that we made, we found that 1302 genes were differentially expressed between these two EC phenotypes. Both principal component analysis (PCA) and heat map-based hierarchical clustering separated the cancerous versus control ECs as two distinctive clusters, and MetaCore disease biomarker analysis indicated that these differentially expressed genes are highly correlated with breast neoplasm diseases. Gene Set Enrichment Analysis software (GSEA) enriched these genes to extracellular matrix (ECM) signal pathways and highlighted 127 ECM-associated genes. External validation verified some of these ECM-associated genes are not only generally overexpressed in various cancer tissues but also specifically overexpressed in colorectal cancer ECs and lymphoma ECs. In conclusion, our data demonstrated that ECM-associated genes play pivotal roles in breast cancer EC biology and some of them could serve as potential TEC biomarkers for various cancers.

Keywords

References

  1. Genes Cancer. 2015 Sep;6(9-10):365-6 [PMID: 26622937]
  2. Carcinogenesis. 2013 Oct;34(10):2370-9 [PMID: 23828904]
  3. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  4. Nat Med. 2013 Nov;19(11):1423-37 [PMID: 24202395]
  5. Sci Rep. 2014 Jul 28;4:5853 [PMID: 25068296]
  6. J Transl Med. 2015 Jan 27;13:27 [PMID: 25623554]
  7. Nat Protoc. 2006;1(4):1743-60 [PMID: 17487157]
  8. Oncotarget. 2017 Jul 18;8(29):48471-48487 [PMID: 28476046]
  9. Cancer Res. 2015 Apr 1;75(7):1244-54 [PMID: 25634211]
  10. Genes Dis. 2014 Sep;1(1):87-105 [PMID: 25401122]
  11. Aging (Albany NY). 2016 Dec 15;9(1):114-132 [PMID: 27992856]
  12. BMC Genomics. 2008 Apr 30;9:201 [PMID: 18447899]
  13. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  14. Anticancer Res. 2016 Mar;36(3):1119-26 [PMID: 26977007]
  15. Science. 2000 Aug 18;289(5482):1197-202 [PMID: 10947988]
  16. Genome Biol. 2016 Apr 07;17 :63 [PMID: 27052890]
  17. Nat Biotechnol. 2014 Oct;32(10):1053-8 [PMID: 25086649]
  18. Oncotarget. 2016 Jul 19;7(29):45538-45546 [PMID: 27323782]
  19. J Cell Biochem. 2012 Apr;113(4):1142-51 [PMID: 22095586]
  20. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  21. Nature. 2014 Jan 23;505(7484):495-501 [PMID: 24390350]
  22. Aging (Albany NY). 2016 Dec 20;8(12 ):3180-3184 [PMID: 27997357]
  23. Oncotarget. 2015 Jan 30;6(3):1359-81 [PMID: 25682197]
  24. Breast Cancer Res. 2012 Aug 20;14(4):R120 [PMID: 22906178]
  25. Oncotarget. 2017 May 19;8(42):73208-73218 [PMID: 29069864]
  26. Cell. 2010 Apr 2;141(1):52-67 [PMID: 20371345]
  27. Matrix Biol. 2015 May-Jul;44-46:184-90 [PMID: 25661772]
  28. Cancer Res. 2004 Nov 1;64(21):7857-66 [PMID: 15520192]
  29. Nat Methods. 2017 Apr;14 (4):381-387 [PMID: 28263961]
  30. Oncoscience. 2015 Nov 23;2(11):913-4 [PMID: 26697523]
  31. Cancer Cell Int. 2005 May 26;5(1):17 [PMID: 15918895]
  32. Nat Methods. 2013 Nov;10(11):1096-8 [PMID: 24056875]
  33. Oncotarget. 2016 Feb 2;7(5):5313-26 [PMID: 26673618]
  34. Genes Cancer. 2015 Jul;6(7-8):317-327 [PMID: 26413215]
  35. Nature. 2008 Jun 26;453(7199):1239-43 [PMID: 18488015]
  36. Am J Pathol. 2004 Aug;165(2):601-8 [PMID: 15277233]
  37. Oncotarget. 2017 May 17;8(32):53854-53872 [PMID: 28881856]
  38. Am J Pathol. 2008 May;172(5):1381-90 [PMID: 18403594]
  39. Oncotarget. 2017 May 16;8(32):53763-53779 [PMID: 28881849]
  40. Nat Rev Clin Oncol. 2012 Sep;9(9):498-509 [PMID: 22850752]
  41. Nature. 2008 Nov 27;456(7221):470-6 [PMID: 18978772]
  42. Nat Rev Genet. 2009 Feb;10 (2):122-33 [PMID: 19139763]
  43. Nat Commun. 2014 Sep 02;5:4715 [PMID: 25178650]
  44. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  45. Carcinogenesis. 2014 Jul;35(7):1661-70 [PMID: 24743511]
  46. Aging (Albany NY). 2015 Nov;7(11):903-10 [PMID: 26546448]
  47. Nat Rev Cancer. 2003 Jun;3(6):401-10 [PMID: 12778130]
  48. Nat Protoc. 2008;3(6):1085-91 [PMID: 18546599]
  49. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  50. Adv Drug Deliv Rev. 2016 Feb 1;97:41-55 [PMID: 26743193]
  51. Cold Spring Harb Perspect Med. 2012 Mar;2(3):a006536 [PMID: 22393533]
  52. Oncotarget. 2017 May 9;8(19):32309-32321 [PMID: 28427222]
  53. J Biol Chem. 2011 Nov 18;286(46):40025-37 [PMID: 21940631]
  54. Nature. 2015 Oct 1;526(7571):131-5 [PMID: 26416748]

Grants

  1. K22 CA190511/NCI NIH HHS
  2. R01 CA057621/NCI NIH HHS
  3. U01 CA199315/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0genesbreastECscancerendothelialtissuesRNAsequencingECM-associatedcellsTECplaygeneexpressioncontrolcancerouscellscRNA-seqdifferentiallyexpressedtwoECanalysisextracellularmatrixoverexpressedvariousTumorindispensibleroletumorgrowthmetastasisalthoughmuchdetailedmechanismstillremainselusivestudycharacterizedcomparedglobalprofilesTECsisolatedhumanreductionmammoplastyrespectivelysingleBasedqualifiedlibrariesmadefound1302phenotypesprincipalcomponentPCAheatmap-basedhierarchicalclusteringseparatedversusdistinctiveclustersMetaCorediseasebiomarkerindicatedhighlycorrelatedneoplasmdiseasesGeneSetEnrichmentAnalysissoftwareGSEAenrichedECMsignalpathwayshighlighted127ExternalvalidationverifiedgenerallyalsospecificallycolorectallymphomaconclusiondatademonstratedpivotalrolesbiologyservepotentialbiomarkerscancersSingle-cellrevealssignaturescancer-associatedsingle-cell

Similar Articles

Cited By