Evaluating excited state atomic polarizabilities of chromophores.

Esther Heid, Patricia A Hunt, Christian Schröder
Author Information
  1. Esther Heid: University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 19, A-1090 Vienna, Austria. christian.schroeder@univie.ac.at.

Abstract

Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered.

References

  1. Angew Chem Int Ed Engl. 2005 Sep 5;44(35):5635-9 [PMID: 16059959]
  2. J Chem Theory Comput. 2016 Aug 9;12(8):3654-61 [PMID: 27340904]
  3. J Chem Phys. 2004 Jun 22;120(24):11479-86 [PMID: 15268182]
  4. J Chem Phys. 2016 Oct 28;145(16):164506 [PMID: 27802630]
  5. J Am Chem Soc. 2003 Jun 18;125(24):7470-8 [PMID: 12797822]
  6. J Phys Chem A. 2015 May 28;119(21):5426-38 [PMID: 25699575]
  7. J Chem Theory Comput. 2016 Sep 13;12(9):4423-9 [PMID: 27442613]
  8. J Am Chem Soc. 2014 Oct 22;136(42):14866-74 [PMID: 25243826]
  9. J Chem Phys. 2006 Jan 14;124(2):024111 [PMID: 16422575]
  10. J Phys Chem B. 2007 Apr 19;111(15):3953-9 [PMID: 17385910]
  11. J Chem Phys. 2007 Sep 7;127(9):094706 [PMID: 17824758]
  12. J Phys Chem A. 2013 Jan 10;117(1):219-27 [PMID: 23214431]
  13. Phys Chem Chem Phys. 2012 Jun 14;14(22):8116-22 [PMID: 22555862]
  14. Angew Chem Int Ed Engl. 2010;49(2):454-7 [PMID: 19967685]
  15. J Chem Theory Comput. 2009 Sep 8;5(9):2420-35 [PMID: 26616623]
  16. J Chem Theory Comput. 2005 Jan;1(1):153-68 [PMID: 26641126]
  17. Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1813-6 [PMID: 23283840]
  18. J Phys Chem Lett. 2014 Jun 5;5(11):1845-9 [PMID: 26273863]
  19. J Phys Chem A. 2014 Jul 31;118(30):5652-6 [PMID: 25014651]
  20. Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20 [PMID: 18989472]
  21. Phys Chem Chem Phys. 2011 Oct 21;13(39):17768-74 [PMID: 21887426]
  22. Phys Chem Chem Phys. 2016 Jan 21;18(3):1665-70 [PMID: 26675139]
  23. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 [PMID: 9944570]
  24. Phys Chem Chem Phys. 2013 Feb 28;15(8):2703-11 [PMID: 23340807]
  25. J Phys Chem B. 2012 Aug 2;116(30):9122-9 [PMID: 22734466]
  26. J Chem Theory Comput. 2013 Oct 8;9(10):4507-4516 [PMID: 26504457]
  27. J Phys Chem B. 2007 May 10;111(18):4920-5 [PMID: 17253742]
  28. J Comput Chem. 2011 May;32(7):1456-65 [PMID: 21370243]
  29. J Phys Chem B. 2005 Oct 6;109(39):18558-64 [PMID: 16853390]
  30. J Chem Phys. 2016 Oct 28;145(16):164507 [PMID: 27802609]
  31. J Phys Chem A. 2012 Mar 8;116(9):2343-51 [PMID: 22299724]
  32. J Chem Theory Comput. 2009 Aug 11;5(8):1959-67 [PMID: 26613139]
  33. J Phys Chem B. 2005 Mar 3;109(8):3553-64 [PMID: 16851393]
  34. J Phys Chem B. 2009 May 7;113(18):6378-96 [PMID: 19366259]
  35. J Phys Chem B. 2015 Jul 23;119(29):9129-39 [PMID: 25299940]
  36. J Chem Theory Comput. 2005 Nov;1(6):1128-32 [PMID: 26631656]
  37. Phys Chem Chem Phys. 2011 Sep 28;13(36):16395-403 [PMID: 21837322]
  38. J Chem Theory Comput. 2010 Jul 13;6(7):2071-85 [PMID: 26615935]
  39. Chem Rev. 2005 Aug;105(8):2999-3093 [PMID: 16092826]
  40. Phys Chem Chem Phys. 2011 Feb 14;13(6):2160-6 [PMID: 21127788]

Word Cloud

Created with Highcharts 10.0.0atomicpolarizabilitiespolarizabilityexcitedstatemolecularMQchromophoresusedexcitationchangessolvationC153evaluatedusingvariationsite-specificalsolocalforcefieldssimulationconsideredpolarizablegroundrangeGrounddipolesN-methyl-6-oxyquinoliniumbetainecoumarin153solutiontime-dependentdensityfunctionaltheoryTD-DFTmethoddeterminingdevelopeddipoledecomposedchargetransfertermspresenceelectricfieldevaluateundergoesshowssignificantlylessconcludeadequatelydescribedstandardbasednumberhybridizationChangesrepresentativethusoverallratioprovidegoodapproximationatom-specificAccurateneededcomputerdynamicsstudyoftenprobesmethodsdatareportedcanconstructionAtomicstatesfunctionalsbasissetsDifferentmechanismsincludingeffectsexaminedcontinuummodelexplicitviasamplingclustersextractedMDdifferentsolventsEvaluating

Similar Articles

Cited By (10)