Advancing quantitative techniques to improve understanding of the skeletal structure-function relationship.

Frances T Sheehan, Elizabeth L Brainerd, Karen L Troy, Sandra J Shefelbine, Janet L Ronsky
Author Information
  1. Frances T Sheehan: National Institutes of Health, Bethesda, MD, USA. gavellif@cc.nih.gov.
  2. Elizabeth L Brainerd: Brown University, Providence, RI, USA.
  3. Karen L Troy: Worcester Polytechnic Institute, Worcester, MA, USA.
  4. Sandra J Shefelbine: Northeastern University, Boston, MA, USA.
  5. Janet L Ronsky: University of Calgary, Calgary, AB, Canada.

Abstract

Although all functional movement arises from the interplay between the neurological, skeletal, and muscular systems, it is the skeletal system that forms the basic framework for functional movement. Central to understanding human neuromuscular development, along with the genesis of musculoskeletal pathologies, is quantifying how the human skeletal system adapts and mal-adapts to its mechanical environment. Advancing this understanding is hampered by an inability to directly and non-invasively measure in vivo strains, stresses, and forces on bone. Thus, we traditionally have turned to animal models to garner such information. These models enable direct in vivo measures that are not available for human subjects, providing information in regards to both skeletal adaptation and the interplay between the skeletal and muscular systems. Recently, there has been an explosion of new imaging and modeling techniques providing non-invasive, in vivo measures and estimates of skeletal form and function that have long been missing. Combining multiple modalities and techniques has proven to be one of our most valuable resources in enhancing our understanding of the form-function relationship of the human skeletal, muscular, and neurological systems. Thus, to continue advancing our knowledge of the structural-functional relationship, validation of current tools is needed, while development is required to limit the deficiencies in these tools and develop new ones.

References

  1. J Exp Biol. 2016 Dec 1;219(Pt 23):3701-3711 [PMID: 27655556]
  2. Bone. 2010 Sep;47(3):673-80 [PMID: 20601299]
  3. IEEE Trans Med Imaging. 2001 Jun;20(6):514-25 [PMID: 11437111]
  4. Bone. 2002 May;30(5):799-804 [PMID: 11996923]
  5. Med Phys. 2012 Apr;39(4):1893-903 [PMID: 22482611]
  6. Comput Methods Biomech Biomed Engin. 2016 Nov;19(14):1475-88 [PMID: 26930478]
  7. Clin Biomech (Bristol, Avon). 2007 Feb;22(2):131-54 [PMID: 17070969]
  8. J Biomech Eng. 2015 Jan;137(1): [PMID: 25322335]
  9. Anat Rec A Discov Mol Cell Evol Biol. 2003 Dec;275(2):1081-101 [PMID: 14613308]
  10. Osteoarthritis Cartilage. 2010 Nov;18(11):1408-16 [PMID: 20696262]
  11. Integr Comp Biol. 2007 Jul;47(1):16-54 [PMID: 21672819]
  12. Comput Methods Biomech Biomed Engin. 2011 Mar;14(3):253-62 [PMID: 20229379]
  13. J Exp Zool A Ecol Genet Physiol. 2010 Jun 1;313(5):262-79 [PMID: 20095029]
  14. IEEE Trans Med Imaging. 2015 Feb;34(2):589-98 [PMID: 25330483]
  15. Annu Rev Biomed Eng. 2001;3:245-73 [PMID: 11447064]
  16. J Biomech. 2010 May 28;43(8):1623-6 [PMID: 20167324]
  17. J Biomech Eng. 2003 Apr;125(2):238-45 [PMID: 12751286]
  18. J Biomech. 2015 Jul 16;48(10):2181-5 [PMID: 26003485]
  19. Comput Methods Biomech Biomed Engin. 2015 Aug;18(11):1238-1251 [PMID: 24641349]
  20. J Biomech. 2008;41(6):1243-52 [PMID: 18346745]
  21. Coll Relat Res. 1981 Feb;1(2):209-26 [PMID: 7049548]
  22. Med Sci Sports Exerc. 2006 Jun;38(6):1121-31 [PMID: 16775555]
  23. Magn Reson Imaging. 2011 Apr;29(3):324-34 [PMID: 21130590]
  24. J Musculoskelet Neuronal Interact. 2004 Mar;4(1):12-21 [PMID: 15615074]
  25. Am J Sports Med. 2003 Jan-Feb;31(1):75-9 [PMID: 12531761]
  26. Proc Inst Mech Eng H. 2014 Oct;228(10):1108-13 [PMID: 25361693]
  27. J Bone Joint Surg Am. 1977 Oct;59(7):954-62 [PMID: 561786]
  28. J Biomech. 1993 Apr-May;26(4-5):523-35 [PMID: 8478354]
  29. Osteoporos Int. 2016 Apr;27(4):1281-1386 [PMID: 26856587]
  30. Bone Rep. 2018 Apr 14;8:187-194 [PMID: 29963602]
  31. Am J Sports Med. 2004 Jun;32(4):975-83 [PMID: 15150046]
  32. Med Biol Eng Comput. 1998 Jan;36(1):57-9 [PMID: 9614749]
  33. J Biomech. 2015 Sep 18;48(12):3390-7 [PMID: 26163754]
  34. Osteoporos Int. 2016 Sep;27(9):2791-2802 [PMID: 27154435]
  35. Ann Ist Super Sanita. 2012;48(1):75-82 [PMID: 22456020]
  36. Bone. 2001 Jan;28(1):128-32 [PMID: 11165954]
  37. Ann Biomed Eng. 2004 Mar;32(3):447-57 [PMID: 15095819]
  38. J Biomech. 2011 Jan 4;44(1):193-7 [PMID: 20863502]
  39. Med Eng Phys. 2012 Apr;34(3):290-8 [PMID: 21840240]
  40. Ultrasound Med Biol. 2015 Jul;41(7):2049-56 [PMID: 25864018]
  41. Am J Sports Med. 1998 Nov-Dec;26(6):841-6 [PMID: 9850789]
  42. J Orthop Res. 2013 Sep;31(9):1406-13 [PMID: 23740548]
  43. J Orthop Res. 2004 Mar;22(2):346-52 [PMID: 15013095]
  44. Acad Radiol. 2013 Jan;20(1):99-107 [PMID: 22981604]
  45. Am J Sports Med. 2006 Aug;34(8):1240-6 [PMID: 16636348]
  46. Med Sci Sports Exerc. 2008 Feb;40(2):215-22 [PMID: 18202582]
  47. J Biomech. 2005 Feb;38(2):293-8 [PMID: 15598456]
  48. Arch Orthop Trauma Surg. 2001;121(4):181-5 [PMID: 11317676]
  49. Bone. 2004 Dec;35(6):1375-82 [PMID: 15589219]
  50. J Shoulder Elbow Surg. 2014 May;23(5):708-19 [PMID: 24291045]
  51. Osteoporos Int. 2002 Jan;13(1):6-17 [PMID: 11878456]
  52. Osteoarthritis Cartilage. 2004 Nov;12(11):878-86 [PMID: 15501403]
  53. Clin Orthop Relat Res. 2007 Jan;454:81-8 [PMID: 17202918]
  54. Technol Health Care. 1996 Apr;4(1):113-9 [PMID: 8773313]
  55. J Biomech. 2000 Jul;33(7):819-25 [PMID: 10831756]
  56. J Anthropol Sci. 2012;90:33-58 [PMID: 22781584]
  57. J Orthop Res. 1986;4(4):379-92 [PMID: 3783297]
  58. J Exp Biol. 2016 Feb;219(Pt 3):404-11 [PMID: 26596531]
  59. J Orthop Res. 2014 Nov;32(11):1406-15 [PMID: 25087777]
  60. J Biomech. 2007;40(13):2982-9 [PMID: 17434172]
  61. Integr Comp Biol. 2017 Jul 1;57(1):33-47 [PMID: 28881939]
  62. Ann Biomed Eng. 2004 Feb;32(2):297-305 [PMID: 15008378]
  63. J Biomech. 2016 Jun 14;49(9):1613-1619 [PMID: 27063249]
  64. J Biomech. 2014 Aug 22;47(11):2759-65 [PMID: 24882740]
  65. J Magn Reson Imaging. 2012 Jan;35(1):147-55 [PMID: 21990043]
  66. J Biomech. 2012 Apr 5;45(6):1117-22 [PMID: 22284428]
  67. J Biomech. 2003 Jul;36(7):897-904 [PMID: 12757797]
  68. J Orthop Res. 2009 Jan;27(1):71-7 [PMID: 18634007]
  69. Exerc Sport Sci Rev. 2003 Jan;31(1):45-50 [PMID: 12562170]
  70. J Biomech Eng. 2011 Dec;133(12):121002 [PMID: 22206419]
  71. Med Eng Phys. 2009 Jan;31(1):10-6 [PMID: 18434230]
  72. J Biomech. 2006;39(6):1107-15 [PMID: 16023125]
  73. Front Endocrinol (Lausanne). 2014 Oct 01;5:154 [PMID: 25324829]
  74. J Bone Miner Res. 2003 Feb;18(2):352-9 [PMID: 12568413]

Grants

  1. R01 AR063691/NIAMS NIH HHS

MeSH Term

Animals
Humans
Musculoskeletal Physiological Phenomena

Word Cloud

Created with Highcharts 10.0.0skeletalunderstandinghumanmuscularsystemsvivotechniquesrelationshipfunctionalmovementinterplayneurologicalsystemdevelopmentAdvancingThusmodelsinformationmeasuresprovidingnewtoolsAlthougharisesformsbasicframeworkCentralneuromuscularalonggenesismusculoskeletalpathologiesquantifyingadaptsmal-adaptsmechanicalenvironmenthamperedinabilitydirectlynon-invasivelymeasurestrainsstressesforcesbonetraditionallyturnedanimalgarnerenabledirectavailablesubjectsregardsadaptationRecentlyexplosionimagingmodelingnon-invasiveestimatesformfunctionlongmissingCombiningmultiplemodalitiesprovenonevaluableresourcesenhancingform-functioncontinueadvancingknowledgestructural-functionalvalidationcurrentneededrequiredlimitdeficienciesdeveloponesquantitativeimprovestructure-function

Similar Articles

Cited By