Understanding immune function as a pace of life trait requires environmental context.

B Irene Tieleman
Author Information
  1. B Irene Tieleman: Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands. ORCID

Abstract

This article provides a brief historical perspective on the integration of physiology into the concept of the pace of life of birds, evaluates the fit of immune function into this framework, and asks what it will take to fruitfully understand immune functioning of birds in pace of life studies in the future. In the late 1970s, physiology started to seriously enter avian life history ecology, with energy as the main currency of interest, inspired by David Lack's work in the preceding decades emphasizing how food availability explained life history variation. In an effort to understand the trade-off between survival and reproduction, and specifically the mortality costs associated with hard work, in the 1980s and 1990s, other physiological phenomena entered the realm of animal ecologists, including endocrinology, oxidative stress, and immunology. Reviewing studies thus far to evaluate the role of immune function in a life history context and particularly to address the questions whether immune function (1) consistently varies with life history variation among free-living bird species and (2) mediates life history trade-offs in experiments with free-living bird species; I conclude that, unlike energy metabolism, the immune system does not closely covary with life history among species nor mediates the classical trade-offs within individuals. Instead, I propose that understanding the tremendous immunological variation uncovered among free-living birds over the past 25 years requires a paradigm shift. The paradigm should shift from viewing immune function as a costly trait involved in life history trade-offs to explicitly including the benefits of the immune system and placing it firmly in an environmental and ecological context. A first step forward will be to quantify the immunobiotic pressures presented by diverse environmental circumstances that both shape and challenge the immune system of free-living animals. Current developments in the fields of infectious wildlife diseases and host-microbe interactions provide promising steps in this direction.

Keywords

References

  1. Nature. 2012 Jun 13;486(7402):215-21 [PMID: 22699610]
  2. Dev Comp Immunol. 2005;29(3):275-86 [PMID: 15572075]
  3. Naturwissenschaften. 2009 Oct;96(10):1193-202 [PMID: 19609498]
  4. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  5. Oecologia. 2012 Nov;170(3):605-18 [PMID: 22562421]
  6. Proc Biol Sci. 2006 Apr 7;273(1588):815-22 [PMID: 16618674]
  7. Science. 1982 Oct 22;218(4570):384-7 [PMID: 7123238]
  8. Front Microbiol. 2016 Nov 17;7:1753 [PMID: 27909426]
  9. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2071-6 [PMID: 11172077]
  10. J Exp Biol. 2014 May 1;217(Pt 9):1510-8 [PMID: 24436383]
  11. mBio. 2016 Mar 31;7(2):e02099 [PMID: 27034285]
  12. J Anim Ecol. 2016 Jul;85(4):1025-34 [PMID: 27084785]
  13. Oecologia. 2015 Jan;177(1):281-90 [PMID: 25385541]
  14. Nature. 2012 Jun 13;486(7402):207-14 [PMID: 22699609]
  15. J Evol Biol. 2012 Aug;25(8):1600-13 [PMID: 22686517]
  16. Physiol Biochem Zool. 2000 Jul-Aug;73(4):461-79 [PMID: 11009400]
  17. Comp Biochem Physiol A Mol Integr Physiol. 2012 May;162(1):7-15 [PMID: 22316629]
  18. Physiol Biochem Zool. 2009 Sep-Oct;82(5):561-71 [PMID: 19650727]
  19. J Comp Physiol B. 2012 Jul;182(5):591-602 [PMID: 22246239]
  20. Integr Comp Biol. 2011 Oct;51(4):563-76 [PMID: 21690107]
  21. Ann N Y Acad Sci. 2001 Dec;951:58-73 [PMID: 11797805]
  22. Am Nat. 2014 Apr;183(4):494-505 [PMID: 24642494]
  23. Physiol Biochem Zool. 2006 May-Jun;79(3):556-64 [PMID: 16691521]
  24. Trends Parasitol. 2003 Dec;19(12):571-4 [PMID: 14642767]
  25. PLoS One. 2013 Jun 28;8(6):e67132 [PMID: 23840603]
  26. Proc Biol Sci. 1999 Jan 7;266(1414):1-12 [PMID: 10081154]
  27. J Evol Biol. 2012 Sep;25(9):1864-76 [PMID: 22817634]
  28. Oecologia. 2006 Apr;147(4):565-75 [PMID: 16450181]
  29. Genome Biol. 2002;3(2):REVIEWS0003 [PMID: 11864374]
  30. Proc Natl Acad Sci U S A. 2007 May 29;104(22):9340-5 [PMID: 17517640]
  31. Evolution. 1996 Oct;50(5):2066-2072 [PMID: 28565588]
  32. Nature. 2012 May 09;486(7402):222-7 [PMID: 22699611]
  33. Biol Bull. 1950 Oct;99(2):237-58 [PMID: 14791422]
  34. Integr Comp Biol. 2011 Oct;51(4):540-51 [PMID: 21727178]
  35. Proc Biol Sci. 2004 Apr 22;271(1541):847-52 [PMID: 15255104]
  36. Proc Biol Sci. 2005 Aug 22;272(1573):1715-20 [PMID: 16087427]
  37. Microbiome. 2017 Dec 01;5(1):156 [PMID: 29191217]
  38. Zoology (Jena). 2011 Sep;114(4):185-90 [PMID: 21737250]
  39. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  40. Biol Bull. 1950 Oct;99(2):259-71 [PMID: 14791423]
  41. Int J Environ Res Public Health. 2013 Oct 01;10(10):4718-27 [PMID: 24084679]
  42. Proc Biol Sci. 2004 May 7;271(1542):925-30 [PMID: 15255047]
  43. Philos Trans R Soc Lond B Biol Sci. 2010 Dec 27;365(1560):4051-63 [PMID: 21078657]
  44. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 May;195(5):445-51 [PMID: 19234709]
  45. Horm Behav. 2017 Feb;88:31-40 [PMID: 27633460]
  46. Ecol Evol. 2013 Apr;3(4):1091-103 [PMID: 23610646]
  47. Proc Biol Sci. 2006 Sep 22;273(1599):2267-74 [PMID: 16928627]
  48. Conserv Biol. 2013 Feb;27(1):103-12 [PMID: 23082926]
  49. Philos Trans R Soc Lond B Biol Sci. 2010 Dec 27;365(1560):4077-88 [PMID: 21078659]
  50. Nature. 2012 Sep 13;489(7415):220-30 [PMID: 22972295]
  51. Horm Behav. 2017 Feb;88:112-121 [PMID: 28065710]
  52. PLoS One. 2011 Apr 19;6(4):e18592 [PMID: 21526186]
  53. Oecologia. 2015 Jan;177(1):147-58 [PMID: 25312403]
  54. Dev Comp Immunol. 2007;31(2):188-201 [PMID: 16870251]
  55. J Exp Biol. 2013 Jul 15;216(Pt 14):2573-80 [PMID: 23531817]
  56. Trends Ecol Evol. 2004 Oct;19(10):523-9 [PMID: 16701317]
  57. Trends Ecol Evol. 1996 Aug;11(8):317-21 [PMID: 21237861]
  58. Integr Comp Biol. 2006 Dec;46(6):1000-15 [PMID: 21672803]
  59. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jan;42(1):120-3 [PMID: 833070]
  60. Trends Ecol Evol. 2000 Oct 1;15(10):421-425 [PMID: 10998520]
  61. Oecologia. 2003 Feb;134(3):332-42 [PMID: 12647140]
  62. Comp Biochem Physiol A Mol Integr Physiol. 2010 Aug;156(4):537-40 [PMID: 20434581]
  63. PLoS One. 2015 Oct 07;10(10):e0137679 [PMID: 26444876]
  64. J Exp Biol. 2016 Nov 15;219(Pt 22):3496-3504 [PMID: 27852759]
  65. Sci Rep. 2012;2:615 [PMID: 22937224]
  66. J Exp Biol. 2006 Jan;209(Pt 2):284-91 [PMID: 16391350]
  67. Front Zool. 2013 Dec 17;10(1):77 [PMID: 24344978]
  68. Appl Environ Microbiol. 2014 Nov;80(21):6714-23 [PMID: 25172851]
  69. Proc Biol Sci. 2002 May 22;269(1495):1059-66 [PMID: 12028764]
  70. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  71. Am Nat. 2008 Dec;172(6):783-96 [PMID: 18999941]
  72. Naturwissenschaften. 2010 Oct;97(10):891-901 [PMID: 20706704]
  73. J Appl Physiol. 1972 Aug;33(2):261-3 [PMID: 4403382]
  74. Oecologia. 2002 Jan;130(2):199-204 [PMID: 28547142]
  75. PeerJ. 2016 Sep 20;4:e2430 [PMID: 27688962]
  76. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  77. Physiol Biochem Zool. 2012 Sep-Oct;85(5):504-15 [PMID: 22902379]
  78. J Exp Biol. 2010 Oct 15;213(Pt 20):3527-35 [PMID: 20889833]
  79. Am Nat. 2015 Oct;186(4):531-46 [PMID: 26655576]
  80. Comp Immunol Microbiol Infect Dis. 2014 Mar;37(2):131-41 [PMID: 24503179]
  81. Trends Ecol Evol. 2006 Jan;21(1):47-53 [PMID: 16701469]
  82. J Exp Biol. 2012 Nov 1;215(Pt 21):3734-41 [PMID: 22811245]
  83. Microbiol Rev. 1995 Mar;59(1):143-69 [PMID: 7535888]
  84. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9017-22 [PMID: 22615389]
  85. J Anim Ecol. 2008 Mar;77(2):356-63 [PMID: 18194261]
  86. Horm Behav. 1986 Dec;20(4):405-17 [PMID: 3793022]

Word Cloud

Created with Highcharts 10.0.0lifeimmunehistoryfunctionfree-livingpacebirdsvariationcontextamongspeciestrade-offssystemenvironmentalphysiologywillunderstandstudiesenergyworkincludingbirdmediatesrequiresparadigmshifttraitarticleprovidesbriefhistoricalperspectiveintegrationconceptevaluatesfitframeworkaskstakefruitfullyfunctioningfuturelate1970sstartedseriouslyenteravianecologymaincurrencyinterestinspiredDavidLack'sprecedingdecadesemphasizingfoodavailabilityexplainedefforttrade-offsurvivalreproductionspecificallymortalitycostsassociatedhard1980s1990sphysiologicalphenomenaenteredrealmanimalecologistsendocrinologyoxidativestressimmunologyReviewingthusfarevaluateroleparticularlyaddressquestionswhether1consistentlyvaries2experimentsconcludeunlikemetabolismcloselycovaryclassicalwithinindividualsInsteadproposeunderstandingtremendousimmunologicaluncoveredpast25 yearsviewingcostlyinvolvedexplicitlybenefitsplacingfirmlyecologicalfirststepforwardquantifyimmunobioticpressurespresenteddiversecircumstancesshapechallengeanimalsCurrentdevelopmentsfieldsinfectiouswildlifediseaseshost-microbeinteractionsprovidepromisingstepsdirectionUnderstandingBirdsEco-immunologyEnvironmentaladaptationImmunePace

Similar Articles

Cited By