Anaerobic metabolism induces greater total energy expenditure during exercise with blood flow restriction.

Miguel S Conceição, Arthur F Gáspari, Ana P B Ramkrapes, Edson M M Junior, Romulo Bertuzzi, Cláudia R Cavaglieri, Mara Patrícia T Chacon-Mikahil
Author Information
  1. Miguel S Conceição: Exercise Physiology Lab., School of Physical Education, University of Campinas-Campinas/Brazil.
  2. Arthur F Gáspari: Exercise Physiology Lab., School of Physical Education, University of Campinas-Campinas/Brazil.
  3. Ana P B Ramkrapes: Exercise Physiology Lab., School of Physical Education, University of Campinas-Campinas/Brazil. ORCID
  4. Edson M M Junior: Exercise Physiology Lab., School of Physical Education, University of Campinas-Campinas/Brazil.
  5. Romulo Bertuzzi: School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
  6. Cláudia R Cavaglieri: Exercise Physiology Lab., School of Physical Education, University of Campinas-Campinas/Brazil.
  7. Mara Patrícia T Chacon-Mikahil: Exercise Physiology Lab., School of Physical Education, University of Campinas-Campinas/Brazil.

Abstract

PURPOSE: We investigated the energy system contributions and total energy expenditure during low intensity endurance exercise associated with blood flow restriction (LIE-BFR) and without blood flow restriction (LIE).
METHODS: Twelve males participated in a contra-balanced, cross-over design in which subjects completed a bout of low-intensity endurance exercise (30min cycling at 40% of [Formula: see text]) with or without BFR, separated by at least 72 hours of recovery. Blood lactate accumulation and oxygen uptake during and after exercise were used to estimate the anaerobic lactic metabolism, aerobic metabolism, and anaerobic alactic metabolism contributions, respectively.
RESULTS: There were significant increases in the anaerobic lactic metabolism (P = 0.008), aerobic metabolism (P = 0.020), and total energy expenditure (P = 0.008) in the LIE-BFR. No significant differences between conditions for the anaerobic alactic metabolism were found (P = 0.582). Plasma lactate concentration was significantly higher in the LIE-BFR at 15min and peak post-exercise (all P≤0.008). Heart rate was significantly higher in the LIE-BFR at 10, 15, 20, 25, and 30min during exercise, and 5, 10, and 15min after exercise (all P≤0.03). Ventilation was significantly higher in the LIE-BFR at 10, 15, and 20min during exercise (all P≤0.003).
CONCLUSION: Low-intensity endurance exercise performed with blood flow restriction increases the anaerobic lactic and aerobic metabolisms, total energy expenditure, and cardiorespiratory responses.

References

  1. Med Sci Sports Exerc. 2002 Jan;34(1):152-7 [PMID: 11782661]
  2. Respir Physiol. 1999 Dec 1;118(2-3):103-15 [PMID: 10647856]
  3. J Sports Sci. 2017 Dec;35(24):2412-2420 [PMID: 28029066]
  4. J Nutr Sci. 2016 Mar 09;5:e7 [PMID: 27066256]
  5. Med Sci Sports Exerc. 2016 Sep;48(9):1699-707 [PMID: 27128665]
  6. J Physiol. 2011 Dec 15;589(Pt 24):6157-71 [PMID: 21969452]
  7. PLoS One. 2015 Oct 15;10(10):e0140616 [PMID: 26468885]
  8. Acta Physiol (Oxf). 2010 Aug;199(4):499-508 [PMID: 20345411]
  9. Med Sci Sports Exerc. 2012 Mar;44(3):406-12 [PMID: 21900845]
  10. Acta Physiol (Oxf). 2014 May;211(1):97-106 [PMID: 24479982]
  11. Am J Physiol. 1999 Apr;276(4):H1399-403 [PMID: 10199868]
  12. Eur J Appl Physiol. 2007 Jun;100(3):275-85 [PMID: 17342543]
  13. J Physiol. 2010 May 15;588(Pt 10):1779-90 [PMID: 20308248]
  14. Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1440-52 [PMID: 26342064]
  15. Eur J Appl Physiol Occup Physiol. 1985;54(4):343-9 [PMID: 4065121]
  16. Metabolism. 2010 Oct;59(10):1510-9 [PMID: 20199783]
  17. Exerc Sport Sci Rev. 1991;19:313-49 [PMID: 1936089]
  18. J Sports Sci. 2011 Jun;29(9):951-8 [PMID: 21547832]
  19. J Sports Sci Med. 2013 Sep 01;12(3):454-60 [PMID: 24149151]
  20. J Sports Sci Med. 2010 Jun 01;9(2):224-30 [PMID: 24149689]
  21. Clin Physiol Funct Imaging. 2014 Jul;34(4):308-16 [PMID: 24237757]
  22. Am J Physiol. 1994 Jun;266(6 Pt 2):H2508-14 [PMID: 8024012]
  23. Appl Physiol Nutr Metab. 2017 Nov;42(11):1165-1171 [PMID: 28704612]
  24. Eur J Appl Physiol. 2010 Jul;109(4):591-600 [PMID: 20544348]
  25. J Appl Physiol (1985). 1996 Dec;81(6):2500-8 [PMID: 9018498]
  26. Am J Physiol Regul Integr Comp Physiol. 2015 Nov 15;309(10):R1234-42 [PMID: 26377556]
  27. Med Sci Sports Exerc. 2011 Jul;43(7):1334-59 [PMID: 21694556]
  28. J Appl Physiol (1985). 2012 Jul;113(2):199-205 [PMID: 22628373]
  29. PLoS One. 2016 Jan 04;11(1):e0145733 [PMID: 26727499]
  30. Eur J Appl Physiol. 2008 Nov;104(4):727-37 [PMID: 18651162]
  31. Am J Physiol Heart Circ Physiol. 2016 May 1;310(9):H1201-9 [PMID: 26873971]
  32. Med Sci Sports Exerc. 2010 Apr;42(4):726-32 [PMID: 19952840]
  33. Clin Physiol Funct Imaging. 2017 Jan;37(1):1-7 [PMID: 26046808]
  34. Acta Physiol (Oxf). 2010 Aug;199(4):367-83 [PMID: 20353495]
  35. Behav Res Methods. 2007 May;39(2):175-91 [PMID: 17695343]
  36. Int J Sports Med. 2005 Feb;26 Suppl 1:S38-48 [PMID: 15702455]
  37. Int J Sports Med. 2015 Mar;36(3):e11-e18 [PMID: 25665001]
  38. Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1645-52 [PMID: 11247775]
  39. J Appl Physiol (1985). 2006 May;100(5):1460-6 [PMID: 16339340]
  40. Front Physiol. 2017 May 29;8:301 [PMID: 28611675]
  41. Compr Physiol. 2015 Apr;5(2):475-512 [PMID: 25880502]
  42. J Sports Sci Med. 2010 Sep 01;9(3):452-8 [PMID: 24149640]
  43. J Appl Physiol (1985). 1996 Oct;81(4):1619-26 [PMID: 8904578]
  44. Am J Physiol Heart Circ Physiol. 2000 Feb;278(2):H530-7 [PMID: 10666085]
  45. Med Sci Sports Exerc. 1995 Sep;27(9):1292-301 [PMID: 8531628]

MeSH Term

Adolescent
Adult
Anaerobiosis
Blood Circulation
Exercise
Female
Humans
Lactic Acid
Male
Oxygen Consumption
Young Adult

Chemicals

Lactic Acid

Word Cloud

Created with Highcharts 10.0.0exercisemetabolismenergyLIE-BFRanaerobictotalexpenditurebloodflowrestrictionP=0endurancelacticaerobic008significantlyhigherP≤010contributionswithout30minlactatealacticsignificantincreases15min15PURPOSE:investigatedsystemlowintensityassociatedLIEMETHODS:Twelvemalesparticipatedcontra-balancedcross-overdesignsubjectscompletedboutlow-intensitycycling40%[Formula:seetext]BFRseparatedleast72hoursrecoveryBloodaccumulationoxygenuptakeusedestimaterespectivelyRESULTS:020differencesconditionsfound582Plasmaconcentrationpeakpost-exerciseHeartrate2025503Ventilation20min003CONCLUSION:Low-intensityperformedmetabolismscardiorespiratoryresponsesAnaerobicinducesgreater

Similar Articles

Cited By