Consensus clustering approach to group brain connectivity matrices.

Javier Rasero, Mario Pellicoro, Leonardo Angelini, Jesus M Cortes, Daniele Marinazzo, Sebastiano Stramaglia
Author Information
  1. Javier Rasero: Biocruces Health Research Institute. Hospital Universitario de Cruces, Barakaldo, Spain.
  2. Mario Pellicoro: Dipartimento di Fisica, Università degli Studi Aldo Moro, Bari, Italy.
  3. Leonardo Angelini: Dipartimento di Fisica, Università degli Studi Aldo Moro, Bari, Italy.
  4. Jesus M Cortes: Biocruces Health Research Institute. Hospital Universitario de Cruces, Barakaldo, Spain.
  5. Daniele Marinazzo: Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Ghent, Belgium.
  6. Sebastiano Stramaglia: Dipartimento di Fisica, Università degli Studi Aldo Moro, Bari, Italy. ORCID

Abstract

A novel approach rooted on the notion of clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (a) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (b) cluster the distance matrix for each node; (c) build the consensus network from the corresponding partitions; and (d) extract groups of subjects by finding the communities of the consensus network thus obtained. Different from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pretraining step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real datasets show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix.

Keywords

References

  1. Methods Mol Biol. 2017;1546:19-35 [PMID: 27896755]
  2. Nat Methods. 2013 Jun;10(6):524-39 [PMID: 23722212]
  3. Neuron. 2015 Aug 5;87(3):657-70 [PMID: 26212711]
  4. Neuroimage. 2017 Mar 1;148:201-211 [PMID: 28093358]
  5. PLoS One. 2010 Oct 28;5(10):e13701 [PMID: 21060892]
  6. Neuroimage. 2014 Jun;93 Pt 1:74-94 [PMID: 24583255]
  7. Front Neuroinform. 2012 Nov 28;6:28 [PMID: 23226127]
  8. Neuroimage. 2011 Feb 1;54(3):2185-97 [PMID: 20933091]
  9. Neuroimage. 2016 Jul 1;134:494-507 [PMID: 27079528]
  10. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9888-91 [PMID: 27528672]
  11. Curr Opin Psychiatry. 2010 May;23(3):239-49 [PMID: 20216219]
  12. Front Neurosci. 2012 Oct 16;6:152 [PMID: 23087608]
  13. Sci Rep. 2012;2:336 [PMID: 22468223]
  14. Neuroimage. 2013 Nov 15;82:403-15 [PMID: 23747961]
  15. IEEE Trans Med Imaging. 2012 May;31(5):1124-40 [PMID: 22328179]
  16. PLoS One. 2014 Aug 15;9(8):e104586 [PMID: 25127129]
  17. PLoS Comput Biol. 2017 Jan 11;13(1):e1005305 [PMID: 28076353]
  18. Neuroimage. 2017 Jan 15;145(Pt B):346-364 [PMID: 26923371]
  19. Phys Rep. 2014 Nov 1;544(1):1-122 [PMID: 32834429]
  20. Nat Commun. 2015 Dec 09;6:8885 [PMID: 26648521]
  21. Neuroimage. 2010 Sep;52(3):1059-69 [PMID: 19819337]

Word Cloud

Created with Highcharts 10.0.0consensusclusteringconnectivitynodesubjectsapproachproposedmatrixnetworkstrategyheterogeneitymatricesdistancesetthusConsensusnovelrootednotiondevelopedcommunitydetectioncomplexnetworkscopecharacterizeshealthdiseasemethodcansummarizedfollows:definecomparingpatternpairsbclustercbuildcorrespondingpartitionsdextractgroupsfindingcommunitiesobtainedDifferentpreviousimplementationsproposeusecombineinformationarisingpatternsmayseeneitherexploratorytechniqueunsupervisedpretrainingstephelpsubsequentconstructionsupervisedclassifierApplicationstoymodeltworealdatasetsshoweffectivenessmethodologyrepresentstermsweightedgroupbrainRestingfMRIStructuralDTIUnsupervisedlearning

Similar Articles

Cited By