A silent eligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum.

Tomomi Shindou, Mayumi Shindou, Sakurako Watanabe, Jeffery Wickens
Author Information
  1. Tomomi Shindou: Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0412, Japan.
  2. Mayumi Shindou: Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0412, Japan.
  3. Sakurako Watanabe: Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0412, Japan.
  4. Jeffery Wickens: Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0412, Japan. ORCID

Abstract

Dopamine-dependent synaptic plasticity is a candidate mechanism for reinforcement learning. A silent eligibility trace - initiated by synaptic activity and transformed into synaptic strengthening by later action of dopamine - has been hypothesized to explain the retroactive effect of dopamine in reinforcing past behaviour. We tested this hypothesis by measuring time-dependent modulation of synaptic plasticity by dopamine in adult mouse striatum, using whole-cell recordings. Presynaptic activity followed by postsynaptic action potentials (pre-post) caused spike-timing-dependent long-term depression in D1-expressing neurons, but not in D2 neurons, and not if postsynaptic activity followed presynaptic activity. Subsequent experiments focused on D1 neurons. Applying a dopamine D1 receptor agonist during induction of pre-post plasticity caused long-term potentiation. This long-term potentiation was hidden by long-term depression occurring concurrently and was unmasked when long-term depression blocked an L-type calcium channel antagonist. Long-term potentiation was blocked by a Ca -permeable AMPA receptor antagonist but not by an NMDA antagonist or an L-type calcium channel antagonist. Pre-post stimulation caused transient elevation of rectification - a marker for expression of Ca -permeable AMPA receptors - for 2-4-s after stimulation. To test for an eligibility trace, dopamine was uncaged at specific time points before and after pre- and postsynaptic conjunction of activity. Dopamine caused potentiation selectively at synapses that were active 2-s before dopamine release, but not at earlier or later times. Our results provide direct evidence for a silent eligibility trace in the synapses of striatal neurons. This dopamine-timing-dependent plasticity may play a central role in reinforcement learning.

Keywords

References

  1. J Neurophysiol. 1999 Dec;82(6):3575-9 [PMID: 10601483]
  2. J Neurophysiol. 2001 Jan;85(1):117-24 [PMID: 11152712]
  3. Nature. 2001 Sep 6;413(6851):67-70 [PMID: 11544526]
  4. J Neurosci Methods. 2001 Dec 15;112(2):119-33 [PMID: 11716947]
  5. Science. 2003 Mar 21;299(5614):1898-902 [PMID: 12649484]
  6. J Neurosci. 1992 Nov;12(11):4224-33 [PMID: 1359031]
  7. Nature. 2003 Oct 30;425(6961):917-25 [PMID: 14586460]
  8. Nat Neurosci. 2006 May;9(5):602-4 [PMID: 16582904]
  9. Cereb Cortex. 2007 Oct;17(10):2443-52 [PMID: 17220510]
  10. Synapse. 2007 Jun;61(6):375-90 [PMID: 17372980]
  11. Neuron. 2007 Apr 19;54(2):237-44 [PMID: 17442245]
  12. J Physiol. 2008 Jan 1;586(1):265-82 [PMID: 17974593]
  13. J Neurosci. 2008 Mar 5;28(10):2435-46 [PMID: 18322089]
  14. Science. 2008 Aug 8;321(5890):848-51 [PMID: 18687967]
  15. Philos Trans R Soc Lond B Biol Sci. 2008 Dec 12;363(1511):3801-11 [PMID: 18829433]
  16. J Neurosci. 2008 Oct 22;28(43):10814-24 [PMID: 18945889]
  17. J Neurosci. 2011 Sep 7;31(36):13015-22 [PMID: 21900580]
  18. Nature. 2012 Jan 25;482(7383):47-52 [PMID: 22278062]
  19. Front Mol Neurosci. 2012 Apr 11;5:49 [PMID: 22514518]
  20. J Neurosci. 2013 May 29;33(22):9353-63 [PMID: 23719804]
  21. J Neural Transm Gen Sect. 1990;80(1):9-31 [PMID: 2407269]
  22. J Physiol. 1987 Nov;392:397-416 [PMID: 2451725]
  23. Science. 2014 Sep 26;345(6204):1616-20 [PMID: 25258080]
  24. Elife. 2015 Oct 30;4:null [PMID: 26516682]
  25. Neuron. 2015 Nov 4;88(3):528-38 [PMID: 26593091]
  26. eNeuro. 2016 Nov 16;3(6): [PMID: 27896311]
  27. Nat Commun. 2017 Aug 24;8(1):334 [PMID: 28839128]
  28. Brain Res. 1985 Dec 16;359(1-2):113-9 [PMID: 4075139]
  29. J Physiol. 1995 Jul 15;486 ( Pt 2):297-303 [PMID: 7473197]
  30. J Physiol. 1995 Jul 15;486 ( Pt 2):305-12 [PMID: 7473198]
  31. Neuron. 1995 Aug;15(2):453-62 [PMID: 7646897]
  32. J Neurophysiol. 1993 Nov;70(5):1937-49 [PMID: 7905031]
  33. J Comput Neurosci. 1995 Sep;2(3):195-214 [PMID: 8521287]
  34. Neuroscience. 1996 Jan;70(1):1-5 [PMID: 8848115]
  35. J Neurosci Methods. 1996 Aug;67(2):221-31 [PMID: 8872889]
  36. Nature. 1997 Feb 6;385(6616):533-6 [PMID: 9020359]
  37. Neuroscience. 1997 Jul;79(2):323-7 [PMID: 9200717]
  38. Exp Brain Res. 1998 Aug;121(3):350-4 [PMID: 9746140]

Grants

  1. /Okinawa Institute of Science and Technology Graduate University

MeSH Term

Animals
Behavior, Animal
Calcium
Dopamine
Mice
Mice, Transgenic
Microscopy, Fluorescence, Multiphoton
Neostriatum
Neuronal Plasticity
Neurons
Patch-Clamp Techniques
Receptors, Dopamine D1
Receptors, Dopamine D2
Reinforcement, Psychology

Chemicals

DRD2 protein, mouse
Drd1 protein, mouse
Receptors, Dopamine D1
Receptors, Dopamine D2
Calcium
Dopamine