Host-microbe interactions in octocoral holobionts - recent advances and perspectives.

Jeroen A J M van de Water, Denis Allemand, Christine Ferrier-Pagès
Author Information
  1. Jeroen A J M van de Water: Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco. jvdewater@centrescientifique.mc. ORCID
  2. Denis Allemand: Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco.
  3. Christine Ferrier-Pagès: Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco.

Abstract

Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.

Keywords

References

  1. Science. 1999 Jan 29;283(5402):686-9 [PMID: 9924028]
  2. Mar Drugs. 2011;9(11):2479-2487 [PMID: 22163197]
  3. Integr Comp Biol. 2010 Sep;50(3):389-410 [PMID: 21558211]
  4. Biol Bull. 1991 Aug;181(1):127-134 [PMID: 29303658]
  5. Mol Ecol Resour. 2012 Mar;12(2):369-73 [PMID: 22018222]
  6. Mar Drugs. 2012 Jun;10(6):1225-1243 [PMID: 22822369]
  7. AMB Express. 2016 Dec;6(1):102 [PMID: 27785778]
  8. Mol Ecol. 2015 Jul;24(13):3501-11 [PMID: 26018191]
  9. PLoS One. 2010 May 28;5(5):e10898 [PMID: 20526374]
  10. Chem Biodivers. 2008 May;5(5):784-92 [PMID: 18493965]
  11. Integr Comp Biol. 2010 Oct;50(4):662-74 [PMID: 21558231]
  12. Immunogenetics. 2005 Aug;57(7):535-48 [PMID: 16041540]
  13. Environ Microbiol. 2008 Sep;10(9):2277-86 [PMID: 18479440]
  14. Appl Environ Microbiol. 2004 Oct;70(10):6166-72 [PMID: 15466563]
  15. Biol Bull. 2015 Oct;229(2):199-208 [PMID: 26504160]
  16. Philos Trans R Soc Lond B Biol Sci. 2016 Mar 5;371(1689): [PMID: 26880846]
  17. Biochem Biophys Res Commun. 2005 Apr 29;330(1):157-62 [PMID: 15781245]
  18. J Nat Prod. 2008 Nov;71(11):1819-24 [PMID: 18973388]
  19. Front Microbiol. 2015 Jul 21;6:713 [PMID: 26257709]
  20. J Phycol. 2014 Dec;50(6):984-97 [PMID: 26988781]
  21. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8488-E8497 [PMID: 28923926]
  22. Environ Microbiol. 2002 Jun;4(6):318-26 [PMID: 12071977]
  23. Dis Aquat Organ. 2012 Oct 10;101(1):1-12 [PMID: 23047186]
  24. FEMS Microbiol Ecol. 2007 Jan;59(1):81-94 [PMID: 17233746]
  25. Am Nat. 2004 Nov;164 Suppl 5:S52-63 [PMID: 15540141]
  26. ISME J. 2017 Jan;11(1):186-200 [PMID: 27392086]
  27. Front Microbiol. 2017 Mar 07;8:341 [PMID: 28326066]
  28. Microb Ecol. 2010 May;59(4):646-57 [PMID: 20309538]
  29. Front Microbiol. 2015 Apr 28;6:364 [PMID: 25972851]
  30. ISME J. 2009 Jun;3(6):685-99 [PMID: 19242535]
  31. J Chem Ecol. 1983 Jul;9(7):817-29 [PMID: 24407755]
  32. Eur J Med Chem. 2010 Dec;45(12):5998-6004 [PMID: 20980079]
  33. Science. 1994 Sep 9;265(5178):1547-51 [PMID: 17801530]
  34. Mar Drugs. 2011;9(9):1543-1553 [PMID: 22131957]
  35. PLoS Biol. 2016 Nov 18;14(11):e2000225 [PMID: 27861590]
  36. Dis Aquat Organ. 2009 Feb 25;83(3):195-208 [PMID: 19402453]
  37. Microb Ecol. 2013 Oct;66(3):701-14 [PMID: 23817604]
  38. Appl Environ Microbiol. 2009 Jun;75(11):3492-501 [PMID: 19346350]
  39. Photosynth Res. 2015 Jan;123(1):95-104 [PMID: 25255987]
  40. Mol Ecol. 2011 Jun;20(12):2525-42 [PMID: 21545573]
  41. Microbiologyopen. 2013 Apr;2(2):259-75 [PMID: 23401293]
  42. Chem Biodivers. 2009 Jan;6(1):86-95 [PMID: 19180458]
  43. Int J Syst Evol Microbiol. 2015 Feb;65(Pt 2):522-530 [PMID: 25389148]
  44. PLoS One. 2014 Jun 17;9(6):e100316 [PMID: 24937478]
  45. Microorganisms. 2016 Jul 05;4(3): [PMID: 27681917]
  46. Environ Microbiol Rep. 2015 Jun;7(3):471-9 [PMID: 25683053]
  47. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19374-9 [PMID: 23112184]
  48. Mar Drugs. 2011 Dec;9(12):2705-2716 [PMID: 22363246]
  49. PLoS One. 2013;8(2):e54989 [PMID: 23405104]
  50. J Bacteriol. 2010 Sep;192(17):4530-1 [PMID: 20601481]
  51. Chem Biodivers. 2015 Sep;12(9):1407-14 [PMID: 26363884]
  52. Comp Biochem Physiol A Mol Integr Physiol. 2007 Jan;146(1):54-62 [PMID: 17064941]
  53. J Org Chem. 2009 Oct 2;74(19):7581-4 [PMID: 19736920]
  54. Mar Biotechnol (NY). 2007 Sep-Oct;9(5):561-76 [PMID: 17514404]
  55. Appl Environ Microbiol. 2012 Sep;78(18):6438-49 [PMID: 22773636]
  56. Appl Environ Microbiol. 2009 Apr;75(8):2294-303 [PMID: 19233949]
  57. Ecol Lett. 2014 Sep;17(9):1121-9 [PMID: 25039752]
  58. J Exp Biol. 2014 May 1;217(Pt 9):1469-77 [PMID: 24436382]
  59. Mar Drugs. 2011;9(8):1319-1331 [PMID: 21892347]
  60. Mar Pollut Bull. 2003 Aug;46(8):1024-31 [PMID: 12907196]
  61. ISME J. 2012 Apr;6(4):790-801 [PMID: 22113375]
  62. Front Microbiol. 2015 Apr 09;6:281 [PMID: 25914684]
  63. Phytochemistry. 2004 Dec;65(24):3231-41 [PMID: 15561188]
  64. Mol Phylogenet Evol. 2006 Dec;41(3):513-27 [PMID: 16876445]
  65. Appl Environ Microbiol. 2004 Feb;70(2):845-9 [PMID: 14766563]
  66. Trends Ecol Evol. 1998 Nov 1;13(11):438-43 [PMID: 21238385]
  67. Am Nat. 2007 Dec;170(6):E143-61 [PMID: 18171161]
  68. mBio. 2017 Jan 10;8(1): [PMID: 28074021]
  69. FEMS Microbiol Rev. 2017 Jan;41(1):92-107 [PMID: 27677972]
  70. Syst Appl Microbiol. 2012 Dec;35(8):541-8 [PMID: 23026312]
  71. FEMS Microbiol Ecol. 2011 Apr;76(1):109-20 [PMID: 21223327]
  72. Sci Rep. 2016 Jun 06;6:27277 [PMID: 27263657]
  73. Microb Ecol. 2012 Apr;63(3):605-18 [PMID: 21984347]
  74. ISME J. 2014 Feb;8(2):271-83 [PMID: 23949663]
  75. J Invertebr Pathol. 1999 May;73(3):321-31 [PMID: 10222188]
  76. ISME J. 2015 Dec;9(12):2620-9 [PMID: 25989369]
  77. ISME J. 2013 Jan;7(1):13-27 [PMID: 22791238]
  78. Sci Rep. 2015 Dec 07;5:17609 [PMID: 26639610]
  79. BMC Microbiol. 2013 May 24;13:117 [PMID: 23705861]
  80. J Invertebr Pathol. 2000 Oct;76(3):176-84 [PMID: 11023745]
  81. PLoS One. 2013;8(2):e57385 [PMID: 23437379]
  82. Nature. 2017 Mar 15;543(7645):373-377 [PMID: 28300113]
  83. Microb Ecol. 2018 Jan;75(1):274-288 [PMID: 28681143]
  84. FEMS Microbiol Ecol. 2010 Dec;74(3):523-33 [PMID: 21044098]
  85. PLoS One. 2010 Mar 05;5(3):e9554 [PMID: 20221265]
  86. J Basic Microbiol. 2015 Jan;55(1):2-10 [PMID: 23996153]
  87. Mar Biotechnol (NY). 2008 Jan-Feb;10(1):56-63 [PMID: 17952508]
  88. Nat Prod Rep. 2017 Mar 17;34(3):235-294 [PMID: 28290569]
  89. Appl Environ Microbiol. 2009 Mar;75(5):1437-44 [PMID: 19114511]
  90. Microb Ecol. 2013 Nov;66(4):972-85 [PMID: 23913197]
  91. Mol Ecol. 2014 Jul;23(13):3330-40 [PMID: 24863571]
  92. PLoS One. 2008 Mar 26;3(3):e1811 [PMID: 18364996]
  93. Mol Cell. 2015 May 21;58(4):598-609 [PMID: 26000845]
  94. PLoS One. 2016 Nov 30;11(11):e0165992 [PMID: 27902710]
  95. Dis Aquat Organ. 2007 Jun 29;76(2):87-97 [PMID: 17760382]
  96. FEMS Microbiol Ecol. 2016 Sep;92(9): [PMID: 27381833]
  97. Front Microbiol. 2014 May 07;5:206 [PMID: 24847321]
  98. Nat Commun. 2017 Feb 10;8:14213 [PMID: 28186132]
  99. FEMS Microbiol Ecol. 2014 Nov;90(2):404-16 [PMID: 25078065]
  100. Nat Rev Microbiol. 2017 Apr;15(4):205-216 [PMID: 28090075]
  101. Appl Microbiol Biotechnol. 2016 Oct;100(19):8315-24 [PMID: 27557714]
  102. Antonie Van Leeuwenhoek. 2016 Jan;109(1):105-19 [PMID: 26558794]
  103. PeerJ. 2016 Nov 29;4:e2625 [PMID: 27904802]
  104. FEMS Microbiol Ecol. 2017 May 1;93(5): [PMID: 28175253]
  105. Science. 2003 Aug 15;301(5635):929-33 [PMID: 12920289]
  106. Chem Biol. 2003 Nov;10(11):1051-6 [PMID: 14652072]
  107. Front Physiol. 2013 Jul 25;4:180 [PMID: 23898300]
  108. ISME J. 2013 Jul;7(7):1452-8 [PMID: 23303372]
  109. Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):4294-4302 [PMID: 23832969]
  110. ISME J. 2015 Oct;9(10):2261-74 [PMID: 25885563]
  111. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13146-51 [PMID: 17664430]
  112. ISME J. 2008 Apr;2(4):350-63 [PMID: 18059490]
  113. Nat Prod Res. 2011 Mar;25(6):585-91 [PMID: 21409719]
  114. PeerJ. 2016 Sep 29;4:e2529 [PMID: 27703865]
  115. Annu Rev Genet. 2008;42:165-90 [PMID: 18983256]
  116. Science. 2001 Jun 29;292(5526):2495-8 [PMID: 11431569]
  117. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6238-40 [PMID: 2875457]
  118. Science. 2006 Apr 28;312(5773):543-7 [PMID: 16645087]
  119. Philos Trans A Math Phys Eng Sci. 2005 Jan 15;363(1826):251-5 [PMID: 15598635]
  120. Mar Pollut Bull. 2002 Nov;44(11):1281-93 [PMID: 12523528]
  121. Microb Ecol. 2017 Feb;73(2):466-478 [PMID: 27726033]
  122. PLoS One. 2013 Jun 26;8(6):e67745 [PMID: 23840768]
  123. J Nat Prod. 2012 Sep 28;75(9):1637-42 [PMID: 22905751]
  124. Appl Environ Microbiol. 2013 Aug;79(15):4759-62 [PMID: 23709513]
  125. Genome Announc. 2016 Feb 11;4(1): [PMID: 26868405]
  126. Front Microbiol. 2016 Apr 05;7:458 [PMID: 27092120]
  127. Proc Biol Sci. 2006 Sep 22;273(1599):2305-12 [PMID: 16928632]
  128. Biol Bull. 2005 Dec;209(3):227-34 [PMID: 16382170]
  129. Mar Drugs. 2011;9(9):1469-1476 [PMID: 22131951]
  130. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):E3730-8 [PMID: 24003149]
  131. Microb Ecol. 2012 Oct;64(3):617-27 [PMID: 22526402]
  132. FEMS Microbiol Ecol. 2003 Apr 1;43(3):337-47 [PMID: 19719665]
  133. J Nat Prod. 2009 Jun;72(6):994-1000 [PMID: 19391605]
  134. Trends Microbiol. 2009 Dec;17(12):554-62 [PMID: 19822428]
  135. Mar Pollut Bull. 2016 Apr 30;105(2):629-40 [PMID: 26763316]
  136. Environ Microbiol. 2006 Dec;8(12):2068-73 [PMID: 17107548]
  137. Coral Reefs. 2012;31(2):487-491 [PMID: 32214633]
  138. FEMS Microbiol Ecol. 2002 Feb 1;39(2):91-100 [PMID: 19709188]
  139. Int J Syst Evol Microbiol. 2005 Nov;55(Pt 6):2251-2255 [PMID: 16280478]
  140. J Nat Prod. 2010 May 28;73(5):925-34 [PMID: 20384296]
  141. Front Microbiol. 2014 Aug 21;5:448 [PMID: 25191321]
  142. J Nat Prod. 2000 Apr;63(4):531-3 [PMID: 10785433]
  143. Trends Ecol Evol. 1998 Aug 1;13(8):316-21 [PMID: 21238320]
  144. mBio. 2016 Jul 26;7(4): [PMID: 27460792]
  145. Mol Ecol. 2015 Jul;24(13):3390-404 [PMID: 26095670]
  146. Mar Pollut Bull. 2016 Mar 15;104(1-2):329-34 [PMID: 26822908]
  147. PLoS One. 2017 Feb 2;12(2):e0171032 [PMID: 28152002]
  148. Trends Ecol Evol. 2010 Apr;25(4):233-40 [PMID: 20006405]
  149. Mol Ecol. 2005 Jul;14(8):2403-17 [PMID: 15969723]
  150. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  151. J Nat Prod. 2009 Jul;72(7):1331-4 [PMID: 19572740]
  152. Biol Rev Camb Philos Soc. 2009 Feb;84(1):1-17 [PMID: 19046402]
  153. Am Nat. 2003 Oct;162(4 Suppl):S51-62 [PMID: 14583857]
  154. Appl Environ Microbiol. 2006 Feb;72(2):1680-3 [PMID: 16461727]
  155. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  156. J Nat Prod. 2009 Sep;72(9):1595-602 [PMID: 19778088]
  157. ISME J. 2015 Mar 17;9(4):894-908 [PMID: 25325380]
  158. Anal Chem. 1997 Jul 1;69(13):2225-31 [PMID: 9212701]
  159. Genome Announc. 2016 Aug 18;4(4): [PMID: 27540075]
  160. Appl Environ Microbiol. 2002 May;68(5):2214-28 [PMID: 11976091]
  161. Environ Microbiol. 2008 Oct;10(10):2497-504 [PMID: 18833647]
  162. Mar Drugs. 2011;9(8):1307-1318 [PMID: 21892346]
  163. J Nat Prod. 2003 Jun;66(6):855-7 [PMID: 12828474]
  164. Front Microbiol. 2016 Jun 21;7:917 [PMID: 27445997]
  165. Sci Rep. 2017 Jan 17;7:40455 [PMID: 28094312]

MeSH Term

Animal Diseases
Animals
Anthozoa
Bacteria
Biological Products
Coral Reefs
Drug Discovery
Ecosystem
Fungi
Host Microbial Interactions
Host-Pathogen Interactions
Microbiota
Spatio-Temporal Analysis
Symbiosis
Viruses

Chemicals

Biological Products

Word Cloud

Created with Highcharts 10.0.0octocoralsoctocoralorganismsholobiontsmicrobiomeprovidingwelladvancesbacterialmayresearchinteractionsfieldSymbiodiniumassociatedmicrobialperspectivesOctocoralsoneubiquitousbenthicmarineecosystemsshallowtropicsAntarcticdeepseahabitatnumerousecosystemserviceshumanscontrastreef-buildingscleractiniancoralsreceivedrelativelylittleattentiondespitedevastatingeffectsdiseaseoutbreaksmanypopulationsRecentshownpossessremarkablystablecommunitiesgeographicaltemporalscalesenvironmentalstressresulthighcapacityregulateproductionantimicrobialquorum-sensinginterferingcompoundsDespitedecadesrelatingoctocoral-microbesynthesisexpandingconducteddatethereforeprovideurgentlyneededreviewcurrentknowledgeSpecificallybrieflyintroduceecologicalroleconceptholobiontdetailedoverviewssymbiosisalgalsymbiontIImainfungalviraltaxaIIIdominanceassemblagesspeciesstabilityassociationsevolutionaryhistoryhostorganismIVdiseasesVuseimmunesystemfightpathogensVIregulationmicrobesVIIdiscoverynaturalproductsregulatoryactivitiesFinallypresentmoveforwardrecognitionsuitablemodelstudycoral-microbesymbiosesHost-microbe-recentBacteriaFungiGorgoniansHolobiontImmunityMicrobiomeOctocoralSoftcoral

Similar Articles

Cited By