Comparison of Immunogenicity and Protection of Two Pneumococcal Protein Vaccines Based on PsaA and PspA.

Jinfei Yu, Bo Li, Xiaorui Chen, Jingcai Lu, Dandan Wang, Tiejun Gu, Wei Kong, Yongge Wu
Author Information
  1. Jinfei Yu: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
  2. Bo Li: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
  3. Xiaorui Chen: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
  4. Jingcai Lu: Changchun BCHT Biotechnology Co., Changchun, China.
  5. Dandan Wang: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
  6. Tiejun Gu: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
  7. Wei Kong: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
  8. Yongge Wu: National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China ygwu@jlu.edu.cn.

Abstract

is a major cause of invasive pneumococcal disease, septicemia, and meningitis that can result in high morbidity rates in children under 5 years old. The current polysaccharide-based vaccines can provide type-specific immunity, but a broad-spectrum vaccine would provide greater coverage. Therefore, developing pneumococcal-protein-based vaccines that can extend to more serum types is highly important. In this study, we vaccinated mice via the subcutaneous (s.c.) route with a systemic vaccine that is a mixture of fusion protein PsaA-PspA23 and a single protein, PspA4, with aluminum hydroxide as an adjuvant. As a comparison, mice were immunized intranasally with a mucosal vaccine that is a mixture of PspA2-PA-BLP (where PA is protein anchor and BLP is bacterium-like particle) and PspA4-PA-BLP, via the intranasal (i.n.) route. The two immunization processes were followed by challenge with bacteria from two different PspA families. Specific IgG titers in the serum and specific IgA titers in the mucosa were determined following immunizations. Bacterial loads and survival rates after challenge were compared. Both the systemic vaccine and the mucosal vaccine induced a significant increase of IgG against PspAs. Only the mucosal vaccine also induced specific IgA in the mucosa. The two vaccines provided protection, but each vaccine showed an advantage. The systemic vaccine induced higher levels of serum antibodies, whereas the mucosal vaccine limited the bacterial load in the lung and blood. Therefore, coimmunizations with the two types of vaccines may be implemented in the future.

Keywords

References

  1. Vaccine. 2004 Sep 9;22(27-28):3575-84 [PMID: 15315836]
  2. Clin Vaccine Immunol. 2010 Mar;17(3):439-46 [PMID: 20089795]
  3. Vaccine. 2007 Mar 22;25(13):2497-506 [PMID: 17081660]
  4. Appl Environ Microbiol. 1997 Oct;63(10):3757-63 [PMID: 16535702]
  5. Vaccine. 2000 Mar 6;18(17):1743-54 [PMID: 10699322]
  6. Infect Immun. 2003 Mar;71(3):1033-41 [PMID: 12595413]
  7. Immunol Invest. 2015;44(5):482-96 [PMID: 26107747]
  8. Infect Immun. 2000 Oct;68(10):5889-900 [PMID: 10992499]
  9. Pediatr Infect Dis J. 2000 Feb;19(2):134-8 [PMID: 10694000]
  10. Infect Immun. 2004 May;72(5):2731-7 [PMID: 15102782]
  11. Crit Rev Microbiol. 2015 Jun;41(2):190-200 [PMID: 23895377]
  12. Vaccine. 2006 Jun 29;24(26):5434-41 [PMID: 16757068]
  13. J Mol Biol. 2000 Jun 16;299(4):1113-9 [PMID: 10843862]
  14. J Med Microbiol. 2008 Mar;57(Pt 3):273-8 [PMID: 18287288]
  15. Cell Mol Life Sci. 2013 Sep;70(18):3303-26 [PMID: 23269437]
  16. J Infect. 2014 Oct;69(4):309-25 [PMID: 24968238]
  17. J Infect Dis. 2000 Dec;182(6):1694-701 [PMID: 11069242]
  18. Immunol Invest. 2014;43(7):717-26 [PMID: 25020076]
  19. Adv Exp Med Biol. 2006;582:111-24 [PMID: 16802623]
  20. J Bacteriol. 2005 Jan;187(1):114-24 [PMID: 15601695]
  21. Infect Immun. 2001 Nov;69(11):6718-24 [PMID: 11598043]
  22. Vaccine. 2014 Sep 29;32(43):5607-13 [PMID: 25132335]
  23. BMC Infect Dis. 2010 Mar 18;10:73 [PMID: 20298596]
  24. FEMS Microbiol Lett. 1992 Mar 15;70(3):257-64 [PMID: 1352512]
  25. Future Microbiol. 2008 Feb;3(1):23-30 [PMID: 18230031]
  26. Lancet. 2009 Sep 12;374(9693):893-902 [PMID: 19748398]
  27. Curr Opin Immunol. 2011 Jun;23(3):407-13 [PMID: 21514128]
  28. PLoS One. 2010 May 27;5(5):e10863 [PMID: 20523738]
  29. Malar J. 2012 Feb 20;11:50 [PMID: 22348325]
  30. Pediatr Infect Dis J. 2000 Mar;19(3):187-95 [PMID: 10749457]

MeSH Term

Animals
Antibodies, Bacterial
Bacterial Proteins
Female
Mice
Mice, Inbred BALB C
Pneumococcal Infections
Pneumococcal Vaccines
Recombinant Proteins
Streptococcus pneumoniae

Chemicals

Antibodies, Bacterial
Bacterial Proteins
Pneumococcal Vaccines
Recombinant Proteins

Word Cloud

Created with Highcharts 10.0.0vaccinevaccinesproteinmucosaltwocanserumsystemicPspAinducedpneumococcalratesprovideThereforetypesmiceviaroutemixturebacterium-likechallengeIgGtitersspecificIgAmucosaPsaAmajorcauseinvasivediseasesepticemiameningitisresulthighmorbiditychildren5yearsoldcurrentpolysaccharide-basedtype-specificimmunitybroad-spectrumgreatercoveragedevelopingpneumococcal-protein-basedextendhighlyimportantstudyvaccinatedsubcutaneousscfusionPsaA-PspA23singlePspA4aluminumhydroxideadjuvantcomparisonimmunizedintranasallyPspA2-PA-BLPPAanchorBLPparticlePspA4-PA-BLPintranasalinimmunizationprocessesfollowedbacteriadifferentfamiliesSpecificdeterminedfollowingimmunizationsBacterialloadssurvivalcomparedsignificantincreasePspAsalsoprovidedprotectionshowedadvantagehigherlevelsantibodieswhereaslimitedbacterialloadlungbloodcoimmunizationsmayimplementedfutureComparisonImmunogenicityProtectionTwoPneumococcalProteinVaccinesBasedStreptococcuspneumoniaeparticlesBLPs

Similar Articles

Cited By