Distinguishing mechanisms underlying EMT tristability.

Dongya Jia, Mohit Kumar Jolly, Satyendra C Tripathi, Petra Den Hollander, Bin Huang, Mingyang Lu, Muge Celiktas, Esmeralda Ramirez-Peña, Eshel Ben-Jacob, José N Onuchic, Samir M Hanash, Sendurai A Mani, Herbert Levine
Author Information
  1. Dongya Jia: 1Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA.
  2. Mohit Kumar Jolly: 1Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA.
  3. Satyendra C Tripathi: 7Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
  4. Petra Den Hollander: 8Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
  5. Bin Huang: 1Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA.
  6. Mingyang Lu: 1Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA.
  7. Muge Celiktas: 7Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
  8. Esmeralda Ramirez-Peña: 8Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
  9. Eshel Ben-Jacob: 1Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA.
  10. José N Onuchic: 1Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA.
  11. Samir M Hanash: 7Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
  12. Sendurai A Mani: 8Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
  13. Herbert Levine: 1Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 USA.

Abstract

BACKGROUND: The Epithelial-Mesenchymal Transition (EMT) endows epithelial-looking cells with enhanced migratory ability during embryonic development and tissue repair. EMT can also be co-opted by cancer cells to acquire metastatic potential and drug-resistance. Recent research has argued that epithelial (E) cells can undergo either a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype that typically displays collective migration, or a complete EMT to adopt a mesenchymal (M) phenotype that shows individual migration. The core EMT regulatory network - miR-34/SNAIL/miR-200/ZEB1 - has been identified by various studies, but how this network regulates the transitions among the E, E/M, and M phenotypes remains controversial. Two major mathematical models - ternary chimera switch (TCS) and cascading bistable switches (CBS) - that both focus on the miR-34/SNAIL/miR-200/ZEB1 network, have been proposed to elucidate the EMT dynamics, but a detailed analysis of how well either or both of these two models can capture recent experimental observations about EMT dynamics remains to be done.
RESULTS: Here, via an integrated experimental and theoretical approach, we first show that both these two models can be used to understand the two-step transition of EMT - E→E/M→M, the different responses of SNAIL and ZEB1 to exogenous TGF-β and the irreversibility of complete EMT. Next, we present new experimental results that tend to discriminate between these two models. We show that ZEB1 is present at intermediate levels in the hybrid E/M H1975 cells, and that in HMLE cells, overexpression of SNAIL is not sufficient to initiate EMT in the absence of ZEB1 and FOXC2.
CONCLUSIONS: These experimental results argue in favor of the TCS model proposing that miR-200/ZEB1 behaves as a three-way decision-making switch enabling transitions among the E, hybrid E/M and M phenotypes.

Keywords

References

  1. BMC Genomics. 2009 Jun 23;10:277 [PMID: 19549304]
  2. Phys Rev Lett. 2014 Aug 15;113(7):078102 [PMID: 25170733]
  3. Nature. 2015 Nov 26;527(7579):472-6 [PMID: 26560033]
  4. Oncogene. 2007 Oct 25;26(49):6979-88 [PMID: 17486063]
  5. Trends Endocrinol Metab. 2016 Oct;27(10 ):681-695 [PMID: 27372267]
  6. Clin Cancer Res. 2016 Nov 15;22(22):5592-5604 [PMID: 27267855]
  7. Sci Rep. 2016 Feb 17;6:21648 [PMID: 26884312]
  8. Dev Cell. 2014 Apr 14;29(1):59-74 [PMID: 24735879]
  9. Sci Rep. 2014 Sep 23;4:6449 [PMID: 25245029]
  10. J Phys Chem B. 2013 Oct 24;117(42):13164-74 [PMID: 23679052]
  11. Genes Dev. 2013 Oct 15;27(20):2192-206 [PMID: 24142872]
  12. Cancer Res. 2015 May 1;75(9):1789-800 [PMID: 25744723]
  13. Nature. 2015 Nov 26;527(7579):525-530 [PMID: 26560028]
  14. Cancer Res. 2008 Oct 1;68(19):7846-54 [PMID: 18829540]
  15. Oncotarget. 2015 Sep 22;6(28):25161-74 [PMID: 26317796]
  16. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8257-62 [PMID: 21536909]
  17. Cell Cycle. 2014;13(24):3818-22 [PMID: 25483053]
  18. Breast Cancer Res. 2011 Feb 08;13(1):202 [PMID: 21392411]
  19. J Clin Invest. 2012 May;122(5):1849-68 [PMID: 22505459]
  20. Trends Genet. 2011 Feb;27(2):55-62 [PMID: 21146896]
  21. J Clin Invest. 2009 Jun;119(6):1420-8 [PMID: 19487818]
  22. Mol Cell Biol. 2016 Sep 12;36(19):2503-13 [PMID: 27402864]
  23. Cell Cycle. 2011 Dec 15;10 (24):4256-71 [PMID: 22134354]
  24. Sci Signal. 2014 Sep 30;7(345):ra91 [PMID: 25270257]
  25. Nat Methods. 2015 Jul;12(7):685-91 [PMID: 25984697]
  26. Science. 2013 Nov 8;342(6159):1234850 [PMID: 24202173]
  27. Oncogene. 2016 Nov 17;35(46):5977-5988 [PMID: 27292262]
  28. Genes Dev. 2008 Apr 1;22(7):894-907 [PMID: 18381893]
  29. J R Soc Interface. 2014 Dec 6;11(101):20140962 [PMID: 25339690]
  30. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  31. Nat Commun. 2015 Feb 11;6:6139 [PMID: 25669750]
  32. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10069-74 [PMID: 17537911]
  33. Cell Death Dis. 2013 Nov 07;4:e915 [PMID: 24201814]
  34. J Clin Invest. 2011 Mar;121(3):1064-74 [PMID: 21393860]
  35. BMC Cell Biol. 2009 Dec 21;10 :94 [PMID: 20025777]
  36. Cell. 2016 Jun 30;166(1):21-45 [PMID: 27368099]
  37. Cell. 2008 May 16;133(4):704-15 [PMID: 18485877]
  38. Cell. 2006 Nov 17;127(4):679-95 [PMID: 17110329]
  39. Cancer Res. 2008 Jan 15;68(2):537-44 [PMID: 18199550]
  40. Cell. 2017 Feb 9;168(4):670-691 [PMID: 28187288]
  41. J Oncol. 2015;2015:865816 [PMID: 25883654]
  42. Genes Dev. 2016 Apr 15;30(8):892-908 [PMID: 27083997]
  43. Am J Pathol. 2011 Mar;178(3):989-96 [PMID: 21356352]
  44. Cancer Res. 2015 Jul 1;75(13):2607-18 [PMID: 25972342]
  45. Cell. 2014 Aug 28;158(5):1110-1122 [PMID: 25171411]
  46. PLoS One. 2013 Oct 04;8(10):e76773 [PMID: 24124593]
  47. Nat Rev Mol Cell Biol. 2009 Jul;10(7):445-57 [PMID: 19546857]
  48. Oncotarget. 2016 Aug 9;7(32):51553-51568 [PMID: 27303921]
  49. Curr Opin Genet Dev. 2009 Aug;19(4):338-42 [PMID: 19464162]
  50. Oncogene. 2016 Nov 17;35(46):5963-5976 [PMID: 26804168]
  51. Cancer Res. 2013 Mar 15;73(6):1981-92 [PMID: 23378344]
  52. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3836-44 [PMID: 26153421]
  53. EMBO Rep. 2010 Sep;11(9):670-7 [PMID: 20706219]
  54. Int J Cancer. 2013 Feb 15;132(4):745-54 [PMID: 22753312]
  55. J Cell Biochem. 2010 May;110(1):44-51 [PMID: 20336666]
  56. Int J Cancer. 2015 Dec 1;137(11):2566-77 [PMID: 26077342]
  57. J R Soc Interface. 2014 Nov 6;11(100):20140774 [PMID: 25232051]
  58. Oncotarget. 2016 Dec 6;7(49):81123-81143 [PMID: 27835603]
  59. Nat Cell Biol. 2008 May;10 (5):593-601 [PMID: 18376396]
  60. Oncotarget. 2016 May 10;7(19):27067-84 [PMID: 27008704]
  61. Nat Rev Mol Cell Biol. 2006 Feb;7(2):131-42 [PMID: 16493418]
  62. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18144-9 [PMID: 24154725]
  63. Cell. 2011 Aug 19;146(4):633-44 [PMID: 21854987]
  64. Nat Rev Mol Cell Biol. 2003 Jan;4(1):33-45 [PMID: 12511867]
  65. Mol Oncol. 2016 Feb;10 (2):253-71 [PMID: 26514616]
  66. J Cell Biol. 2011 Oct 31;195(3):417-33 [PMID: 22024162]
  67. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12 ):E2337-E2346 [PMID: 28270621]
  68. Nat Cell Biol. 2011 Mar;13(3):317-23 [PMID: 21336307]
  69. PLoS One. 2008 Aug 06;3(8):e2888 [PMID: 18682804]
  70. Front Oncol. 2015 Jul 20;5:155 [PMID: 26258068]
  71. Oncotarget. 2015 Jun 20;6(17 ):15436-48 [PMID: 25944618]
  72. Oncogenesis. 2016 Aug 15;5(8):e254 [PMID: 27526108]
  73. Cancer Res. 2013 Oct 15;73(20):6299-309 [PMID: 23943797]
  74. J Mammary Gland Biol Neoplasia. 2010 Jun;15(2):117-34 [PMID: 20490631]
  75. Mol Biosyst. 2014 Apr;10(4):838-50 [PMID: 24481128]
  76. PLoS One. 2015 May 28;10(5):e0126522 [PMID: 26020648]
  77. J R Soc Interface. 2016 May;13(118): [PMID: 27170649]
  78. Dev Biol. 2007 May 15;305(2):695-713 [PMID: 17412320]
  79. Science. 2013 Feb 1;339(6119):580-4 [PMID: 23372014]
  80. Mol Biol Cell. 2011 May 15;22(10 ):1686-98 [PMID: 21411626]
  81. Dev Cell. 2014 Apr 14;29(1):1-2 [PMID: 24735874]

Grants

  1. P30 CA034196/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0EMTcells-canE/MmodelsexperimentalZEB1EhybridMnetworkswitchTCStwoEpithelial-MesenchymaleitherphenotypemigrationcompletemiR-34/SNAIL/miR-200/ZEB1transitionsamongphenotypesremainschimerabistableswitchesCBSdynamicsshowtransitionSNAILpresentresultsFOXC2BACKGROUND:Transitionendowsepithelial-lookingenhancedmigratoryabilityembryonicdevelopmenttissuerepairalsoco-optedcanceracquiremetastaticpotentialdrug-resistanceRecentresearcharguedepithelialundergopartialattainepithelial/mesenchymaltypicallydisplayscollectiveadoptmesenchymalshowsindividualcoreregulatoryidentifiedvariousstudiesregulatescontroversialTwomajormathematicalternarycascadingfocusproposedelucidatedetailedanalysiswellcapturerecentobservationsdoneRESULTS:viaintegratedtheoreticalapproachfirstusedunderstandtwo-stepE→E/M→MdifferentresponsesexogenousTGF-βirreversibilityNextnewtenddiscriminateintermediatelevelsH1975HMLEoverexpressionsufficientinitiateabsenceCONCLUSIONS:arguefavormodelproposingmiR-200/ZEB1behavesthree-waydecision-makingenablingDistinguishingmechanismsunderlyingtristabilityCascadingTernary

Similar Articles

Cited By