Functional energetic responses and individual variance of the human brain revealed by quantitative imaging of adenosine triphosphate production rates.

Xiao-Hong Zhu, Byeong-Yeul Lee, Wei Chen
Author Information
  1. Xiao-Hong Zhu: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA.
  2. Byeong-Yeul Lee: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA.
  3. Wei Chen: Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA.

Abstract

Cellular ATP energy metabolism and regulation are essential for brain function and health. Given the high ATP expenditure at resting-state, it is not yet clear how the human brain at working-state can effectively regulate ATP production to meet higher energy requirement. Through quantitative measurement of regional cerebral ATP production rates and associated neurophysiological parameters in human visual cortex at rest and during visual stimulation, we found significant stimulus-induced and highly correlated neuroenergetic changes, indicating distinctive and complementary roles of the ATP synthesis reactions in supporting evoked neuronal activity and maintaining ATP homeostasis. We also uncovered large individual variances in the neuroenergetic responses and significant reductions in intracellular [H] and free [Mg] during the stimulation. These results provide new insights into the mechanism underlying the brain ATP energy regulation and present a sensitive and much-needed neuroimaging tool for quantitatively assessing neuroenergetic state in healthy and diseased human brain.

Keywords

References

  1. Magn Reson Med. 2007 Jan;57(1):103-14 [PMID: 17191226]
  2. J Cereb Blood Flow Metab. 2009 Jan;29(1):10-8 [PMID: 18781163]
  3. Physiol Rev. 2003 Oct;83(4):1183-221 [PMID: 14506304]
  4. Ann Neurol. 1979 Nov;6(5):371-88 [PMID: 117743]
  5. Science. 1988 Jul 22;241(4864):462-4 [PMID: 3260686]
  6. Magn Reson Med. 1987 Jul;5(1):1-12 [PMID: 3657491]
  7. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14409-14 [PMID: 14612566]
  8. Cell Metab. 2017 Aug 1;26(2):353-360.e3 [PMID: 28768174]
  9. Neuroimage. 2002 Jun;16(2):531-7 [PMID: 12030835]
  10. Comput Biol Med. 2001 Jul;31(4):269-86 [PMID: 11334636]
  11. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7612-7 [PMID: 8755523]
  12. Proc Biol Sci. 2015 Aug 7;282(1812):20151028 [PMID: 26203001]
  13. J Cereb Blood Flow Metab. 1997 Oct;17(10):1040-7 [PMID: 9346428]
  14. Circ Res. 2011 Mar 18;108(6):653-63 [PMID: 21293002]
  15. J Appl Physiol (1985). 2013 Dec;115(11):1583-8 [PMID: 24114701]
  16. Ann Neurol. 2013 Oct;74(4):506-16 [PMID: 24038413]
  17. J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45 [PMID: 11598490]
  18. Science. 2012 Jun 1;336(6085):1090-1 [PMID: 22654030]
  19. Magn Reson Med. 2018 Jan;79(1):22-30 [PMID: 28303591]
  20. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10237-9 [PMID: 12149485]
  21. Science. 2015 Mar 6;347(6226):1100-2 [PMID: 25745164]
  22. Magn Reson Med. 1998 Mar;39(3):429-38 [PMID: 9498599]
  23. Biochim Biophys Acta. 2005 Jan 7;1706(1-2):1-11 [PMID: 15620362]
  24. Trends Neurosci. 2004 Aug;27(8):489-95 [PMID: 15271497]
  25. Magn Reson Med. 1995 Apr;33(4):467-74 [PMID: 7776876]
  26. J Nucl Med. 1984 Feb;25(2):177-87 [PMID: 6610032]
  27. Science. 2006 Nov 24;314(5803):1249-50 [PMID: 17124311]
  28. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2876-81 [PMID: 25730862]
  29. Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17757-62 [PMID: 20837536]
  30. Prog Nucl Magn Reson Spectrosc. 2011 Nov;59(4):319-35 [PMID: 22027341]
  31. J Magn Reson. 2001 Apr;149(2):245-50 [PMID: 11318624]
  32. Acta Neurol Scand. 1970;46(1):85-92 [PMID: 4983875]
  33. J Cereb Blood Flow Metab. 1989 Feb;9(1):2-19 [PMID: 2642915]
  34. J Magn Reson. 1997 Nov;129(1):35-43 [PMID: 9405214]
  35. Magn Reson Med. 1997 Oct;38(4):551-7 [PMID: 9324321]
  36. Clin Chem. 1989 Mar;35(3):392-5 [PMID: 2920404]
  37. Magn Reson Imaging. 1993;11(2):273-8 [PMID: 8455438]
  38. Annu Rev Physiol. 2003;65:401-27 [PMID: 12524459]
  39. Front Physiol. 2014 Feb 13;5:43 [PMID: 24592239]
  40. Magn Reson Med. 2003 Feb;49(2):199-205 [PMID: 12541238]
  41. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3245-50 [PMID: 10077669]
  42. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3523-6 [PMID: 6954498]
  43. Neurology. 1985 Jun;35(6):781-8 [PMID: 4000479]
  44. Physiol Rev. 1997 Jul;77(3):731-58 [PMID: 9234964]
  45. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72 [PMID: 2124706]
  46. Biochem Soc Trans. 2005 Nov;33(Pt 5):897-904 [PMID: 16246006]
  47. J Cereb Blood Flow Metab. 2001 Dec;21(12):1384-92 [PMID: 11740199]
  48. Neuroimage. 2006 Sep;32(3):1317-25 [PMID: 16797191]
  49. Cold Spring Harb Symp Quant Biol. 2011;76:1-16 [PMID: 22194359]
  50. Brain Res Brain Res Rev. 2000 Nov;34(1-2):42-68 [PMID: 11086186]
  51. Anal Biochem. 2017 Jul 15;529:171-178 [PMID: 27568551]
  52. Nature. 1999 Nov 18;402(6759):247, 249 [PMID: 10580491]
  53. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6409-14 [PMID: 18443293]
  54. NMR Biomed. 2014 Sep;27(9):1135-41 [PMID: 25070004]
  55. J Magn Reson B. 1996 Oct;113(1):35-45 [PMID: 8888589]
  56. Pediatr Res. 1994 Apr;35(4 Pt 1):431-5 [PMID: 8047379]
  57. Magn Reson Med. 2001 Mar;45(3):349-55 [PMID: 11241689]
  58. Neuroimage. 2012 May 1;60(4):2107-17 [PMID: 22487547]
  59. Magn Reson Med. 2017 Nov;78(5):1657-1666 [PMID: 27868234]
  60. J Cereb Blood Flow Metab. 1992 Jul;12(4):584-92 [PMID: 1618937]
  61. Biol Psychiatry. 2018 Dec 1;84(11):797-802 [PMID: 28527566]
  62. Brain Res Bull. 2008 Jul 1;76(4):329-43 [PMID: 18502307]

Grants

  1. R01 NS041262/NINDS NIH HHS
  2. R24 MH106049/NIMH NIH HHS
  3. P41 EB015894/NIBIB NIH HHS

MeSH Term

Adenosine Triphosphate
Adult
Energy Metabolism
Evoked Potentials
Female
Humans
Magnetic Resonance Imaging
Male
Visual Cortex

Chemicals

Adenosine Triphosphate

Word Cloud

Created with Highcharts 10.0.0ATPbrainhumanenergyneuroenergeticproductionvisualstimulationCellularmetabolismregulationquantitativeratessignificantindividualresponsesimagingadenosinetriphosphateessentialfunctionhealthGivenhighexpenditureresting-stateyetclearworking-statecaneffectivelyregulatemeethigherrequirementmeasurementregionalcerebralassociatedneurophysiologicalparameterscortexrestfoundstimulus-inducedhighlycorrelatedchangesindicatingdistinctivecomplementaryrolessynthesisreactionssupportingevokedneuronalactivitymaintaininghomeostasisalsouncoveredlargevariancesreductionsintracellular[H]free[Mg]resultsprovidenewinsightsmechanismunderlyingpresentsensitivemuch-neededneuroimagingtoolquantitativelyassessingstatehealthydiseasedFunctionalenergeticvariancerevealedfunctionalresponsein vivo31P-MTapproach

Similar Articles

Cited By