Genomic analysis of oral Campylobacter concisus strains identified a potential bacterial molecular marker associated with active Crohn's disease.

Fang Liu, Rena Ma, Chin Yen Alfred Tay, Sophie Octavia, Ruiting Lan, Heung Kit Leslie Chung, Stephen M Riordan, Michael C Grimm, Rupert W Leong, Mark M Tanaka, Susan Connor, Li Zhang
Author Information
  1. Fang Liu: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
  2. Rena Ma: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
  3. Chin Yen Alfred Tay: Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia.
  4. Sophie Octavia: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
  5. Ruiting Lan: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
  6. Heung Kit Leslie Chung: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
  7. Stephen M Riordan: Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia.
  8. Michael C Grimm: St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia.
  9. Rupert W Leong: Concord Hospital, University of New South Wales, Sydney, NSW, Australia.
  10. Mark M Tanaka: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
  11. Susan Connor: Liverpool Hospital, University of New South Wales, Sydney, NSW, Australia.
  12. Li Zhang: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia. L.Zhang@unsw.edu.au.

Abstract

Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease (IBD) including Crohn's disease (CD) and ulcerative colitis (UC). C. concisus consists of two genomospecies (GS) and diverse strains. This study aimed to identify molecular markers to differentiate commensal and IBD-associated C. concisus strains. The genomes of 63 oral C. concisus strains isolated from patients with IBD and healthy controls were examined, of which 38 genomes were sequenced in this study. We identified a novel secreted enterotoxin B homologue, Csep1. The csep1 gene was found in 56% of GS2 C. concisus strains, presented in the plasmid pICON or the chromosome. A six-nucleotide insertion at the position 654-659 bp in csep1 (csep1-6bpi) was found. The presence of csep1-6bpi in oral C. concisus strains isolated from patients with active CD (47%, 7/15) was significantly higher than that in strains from healthy controls (0/29, P = 0.0002), and the prevalence of csep1-6bpi positive C. concisus strains was significantly higher in patients with active CD (67%, 4/6) as compared to healthy controls (0/23, P = 0.0006). Proteomics analysis detected the Csep1 protein. A csep1 gene hot spot in the chromosome of different C. concisus strains was found. The pICON plasmid was only found in GS2 strains isolated from the two relapsed CD patients with small bowel complications. This study reports a C. concisus molecular marker (csep1-6bpi) that is associated with active CD.

References

  1. J Clin Microbiol. 2000 Jul;38(7):2798-9 [PMID: 10979752]
  2. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  3. J Med Microbiol. 2004 Jun;53(Pt 6):483-93 [PMID: 15150326]
  4. Genome Res. 2004 Jul;14(7):1394-403 [PMID: 15231754]
  5. Clin Microbiol Infect. 2005 Apr;11(4):288-95 [PMID: 15760425]
  6. Bioinformatics. 2005 Aug 1;21(15):3241-7 [PMID: 15905279]
  7. J Clin Microbiol. 2005 Oct;43(10):5091-6 [PMID: 16207968]
  8. BMC Bioinformatics. 2008 Feb 01;9:79 [PMID: 18237442]
  9. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  10. Curr Protoc Mol Biol. 2001 Nov;Chapter 2:Unit 2.4 [PMID: 18265184]
  11. Bioinformatics. 2009 Jan 1;25(1):119-20 [PMID: 18990721]
  12. J Clin Microbiol. 2009 Feb;47(2):453-5 [PMID: 19052183]
  13. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  14. Proteomics. 2010 Mar;10(6):1265-9 [PMID: 20077414]
  15. J Clin Microbiol. 2010 Aug;48(8):2965-7 [PMID: 20519479]
  16. Bioinformatics. 2011 Apr 1;27(7):1009-10 [PMID: 21278367]
  17. BMC Microbiol. 2011 Mar 15;11:53 [PMID: 21406111]
  18. PLoS One. 2011;6(6):e21490 [PMID: 21738679]
  19. Nat Methods. 2011 Sep 29;8(10):785-6 [PMID: 21959131]
  20. PLoS One. 2011;6(9):e25417 [PMID: 21966525]
  21. Clin Microbiol Infect. 2013 May;19(5):445-50 [PMID: 22512739]
  22. PLoS One. 2012;7(5):e38217 [PMID: 22666490]
  23. BMC Bioinformatics. 2012 Jun 18;13:134 [PMID: 22708584]
  24. Front Cell Infect Microbiol. 2012 Apr 02;2:45 [PMID: 22919636]
  25. PLoS One. 2013;8(2):e56888 [PMID: 23437263]
  26. PLoS One. 2013 Apr 12;8(4):e60204 [PMID: 23593174]
  27. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  28. BMC Genomics. 2013 Aug 28;14:585 [PMID: 23984967]
  29. PLoS One. 2013 Sep 23;8(9):e75525 [PMID: 24086553]
  30. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  31. World J Gastroenterol. 2014 Feb 7;20(5):1259-67 [PMID: 24574800]
  32. Int J Microbiol. 2014;2014:476047 [PMID: 25214843]
  33. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  34. Microbiology. 2015 Aug;161(8):1600-12 [PMID: 26002953]
  35. Microbiol Spectr. 2013 Dec;1(2):null [PMID: 26184960]
  36. Bioinformatics. 2015 Nov 15;31(22):3691-3 [PMID: 26198102]
  37. World J Gastroenterol. 2015 Aug 21;21(31):9239-44 [PMID: 26309350]
  38. Bioinformatics. 2016 Jan 15;32(2):292-4 [PMID: 26428292]
  39. Nucleic Acids Res. 2016 Jan 4;44(D1):D694-7 [PMID: 26578559]
  40. Genome Biol. 2015 Dec 29;16:294 [PMID: 26714481]
  41. Gut Pathog. 2016 May 18;8:18 [PMID: 27195022]
  42. Gut Pathog. 2016 Jun 01;8:27 [PMID: 27252786]
  43. Bioinformatics. 2016 Nov 15;32(22):3380-3387 [PMID: 27466620]
  44. Gut Pathog. 2016 Sep 15;8:43 [PMID: 27651834]
  45. Gut Pathog. 2016 Sep 22;8:44 [PMID: 27688814]
  46. Sci Rep. 2016 Dec 02;6:38442 [PMID: 27910936]
  47. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  48. Front Microbiol. 2017 Mar 29;8:527 [PMID: 28424670]
  49. Genome Announc. 2017 Jul 20;5(29):null [PMID: 28729281]
  50. Front Physiol. 2017 Aug 03;8:543 [PMID: 28824443]
  51. Sci Rep. 2018 Jan 30;8(1):1902 [PMID: 29382867]
  52. Scand J Infect Dis. 1995;27(2):187-8 [PMID: 7660089]
  53. Microbiol Mol Biol Rev. 1998 Jun;62(2):434-64 [PMID: 9618448]
  54. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]

MeSH Term

Adolescent
Adult
Aged
Bacterial Proteins
Campylobacter
Campylobacter Infections
Child, Preschool
Chromosomes, Bacterial
Crohn Disease
Female
Genetic Markers
Genome, Bacterial
Genomics
Humans
Male
Middle Aged
Mouth
Symbiosis
Whole Genome Sequencing
Young Adult

Chemicals

Bacterial Proteins
Genetic Markers

Word Cloud

Created with Highcharts 10.0.0concisusstrainsCCDoralpatientsfoundcsep1-6bpiactiveassociateddiseasestudymolecularisolatedhealthycontrolscsep1CampylobacterbowelIBDCrohn'stwogenomesidentifiedCsep1geneGS2plasmidpICONchromosomesignificantlyhigherP = 0analysismarkerbacteriuminflammatoryincludingulcerativecolitisUCconsistsgenomospeciesGSdiverseaimedidentifymarkersdifferentiatecommensalIBD-associated63examined38sequencednovelsecretedenterotoxinBhomologue56%presentedsix-nucleotideinsertionposition654-659 bppresence47%7/150/290002prevalencepositive67%4/6compared0/230006ProteomicsdetectedproteinhotspotdifferentrelapsedsmallcomplicationsreportsGenomicpotentialbacterial

Similar Articles

Cited By