Immune-cognitive system connectivity reduces bumblebee foraging success in complex multisensory floral environments.

Melissa W Mobley, Robert J Gegear
Author Information
  1. Melissa W Mobley: Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, 01609-2280, USA.
  2. Robert J Gegear: Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, 01609-2280, USA. rgegear@wpi.edu.

Abstract

Bumblebees are declining at alarming rate worldwide, posing a significant threat to the function and diversity of temperate ecosystems. These declines have been attributed, in part, to the direct effect of specific pathogens on bumblebee survival. However, pathogens may also have a negative impact on host populations indirectly through immune-induced cognitive deficits in infected individuals. To gain greater insight into mechanisms and potential conservation implications of such 'immune-brain crosstalk' in bumblebees, we non-pathogenetically activated humoral and cellular immune pathways in individuals and then tested for long-term reductions in cognitive performance and foraging proficiency. We show that chronic activation of humoral, but not a cellular, immune pathways and effectors in foragers significantly reduces their ability to flexibly and efficiently harvest resources in multi-sensory floral environments for at least 7 days post-treatment. Humoral defense responses thus have the potential to confer significant foraging costs to bumblebee foragers over timeframes that would negatively impact colony growth and reproductive output under natural conditions. Our findings indicate that fitness effects of immune-brain crosstalk should be considered before attributing wild bumblebee decline to a particular pathogen species.

References

  1. Parasitology. 2016 Mar;143(3):358-65 [PMID: 26646676]
  2. Dev Comp Immunol. 2014 Feb;42(2):240-3 [PMID: 24060502]
  3. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):662-7 [PMID: 21199943]
  4. Cell Host Microbe. 2009 Aug 20;6(2):107-14 [PMID: 19683677]
  5. Acta Neurol Scand. 2016 Sep;134 Suppl 200:34-8 [PMID: 27580904]
  6. Brain Behav Immun. 2015 Jul;47:75-85 [PMID: 25451614]
  7. J Invertebr Pathol. 2006 Oct;93(2):135-9 [PMID: 16737710]
  8. Dev Comp Immunol. 2010 Jul;34(7):705-9 [PMID: 20144650]
  9. J Neurosci. 2014 Jan 15;34(3):953-62 [PMID: 24431453]
  10. Comp Biochem Physiol B Biochem Mol Biol. 2008 Jun;150(2):141-6 [PMID: 18378480]
  11. Brain Behav Immun. 2008 Mar;22(3):301-11 [PMID: 17951027]
  12. J Invertebr Pathol. 2006 Jan;91(1):61-3 [PMID: 16300785]
  13. PLoS One. 2015 Mar 13;10(3):e0118566 [PMID: 25768110]
  14. Proc Natl Acad Sci U S A. 2013 May 7;110(19):E1752-60 [PMID: 23613578]
  15. Trends Neurosci. 2013 May;36(5):285-94 [PMID: 23375772]
  16. Annu Rev Entomol. 2008;53:191-208 [PMID: 17803456]
  17. Ann Bot. 2009 Jun;103(9):1415-23 [PMID: 19208669]
  18. Plant Cell. 2009 Apr;21(4):1031-3 [PMID: 19395682]
  19. Insect Mol Biol. 2006 Oct;15(5):645-56 [PMID: 17069638]
  20. Conserv Biol. 2011 Aug;25(4):662-71 [PMID: 21771075]
  21. J Exp Biol. 2013 Jan 1;216(Pt 1):84-98 [PMID: 23225871]
  22. Annu Rev Entomol. 2005;50:529-51 [PMID: 15471530]
  23. J Exp Psychol Learn Mem Cogn. 2008 May;34(3):478-94 [PMID: 18444750]
  24. Sci Rep. 2015 Nov 09;5:16224 [PMID: 26549293]
  25. Front Behav Neurosci. 2015 Sep 01;9:230 [PMID: 26388749]
  26. Insect Biochem Mol Biol. 1997 May;27(5):413-22 [PMID: 9219367]
  27. PLoS One. 2017 Nov 10;12(11):e0187505 [PMID: 29125851]
  28. Neurobiol Learn Mem. 2014 Nov;115:68-77 [PMID: 25151944]
  29. Protein Pept Lett. 2014 Apr;21(4):399-406 [PMID: 24164260]
  30. Mol Neurobiol. 2009 Aug;40(1):15-32 [PMID: 19365736]
  31. Annu Rev Entomol. 1997;42:611-43 [PMID: 9017902]
  32. Front Endocrinol (Lausanne). 2011 Dec 30;2:105 [PMID: 22654840]
  33. J Invertebr Pathol. 2012 Feb;109(2):209-16 [PMID: 22119631]
  34. Med Hypotheses. 2017 May;102:33-36 [PMID: 28478826]
  35. Biol Lett. 2008 Oct 23;4(5):479-81 [PMID: 18628116]
  36. Annu Rev Microbiol. 1987;41:103-26 [PMID: 3318666]
  37. Proc Biol Sci. 2003 Dec 7;270(1532):2471-3 [PMID: 14667337]
  38. J Autism Dev Disord. 2012 Dec;42(12):2523-33 [PMID: 22434281]
  39. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4386-91 [PMID: 27044096]
  40. Sci Rep. 2015 Jul 16;5:12247 [PMID: 26179416]
  41. Brain Behav Immun. 2006 Mar;20(2):135-8 [PMID: 16084688]
  42. Mol Ecol. 2001 Aug;10(8):2095-9 [PMID: 11555253]
  43. PLoS One. 2015 Oct 14;10(10):e0139652 [PMID: 26465925]
  44. Psychol Sci. 2004 Sep;15(9):610-5 [PMID: 15327632]
  45. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  46. Psychol Rev. 1998 Jan;105(1):83-107 [PMID: 9450372]
  47. ScientificWorldJournal. 2012;2012:905785 [PMID: 22606066]
  48. PeerJ. 2014 Jun 10;2:e434 [PMID: 24949247]
  49. Proc Biol Sci. 2006 May 7;273(1590):1073-8 [PMID: 16600883]
  50. J Neurosci Res. 1995 Dec;42(5):718-23 [PMID: 8600305]
  51. J Biol Chem. 1993 Apr 5;268(10):7044-54 [PMID: 8463238]
  52. Proc Biol Sci. 2015 Aug 22;282(1813):20151371 [PMID: 26246556]
  53. J Invertebr Pathol. 2004 Sep;87(1):59-66 [PMID: 15491600]
  54. Insect Mol Biol. 2011 Aug;20(4):529-40 [PMID: 21615578]
  55. J Biol Chem. 2009 Aug 28;284(35):23558-63 [PMID: 19574227]
  56. J Insect Physiol. 2011 Jul;57(7):1023-32 [PMID: 21570403]
  57. PLoS One. 2009 Oct 27;4(10):e7621 [PMID: 19859547]
  58. PeerJ. 2014 Aug 12;2:e522 [PMID: 25165632]
  59. Science. 2006 Jul 21;313(5785):351-4 [PMID: 16857940]

MeSH Term

Animals
Bees
Cognition
Ecosystem
Feeding Behavior
Flowers
Immunity
Pollination

Word Cloud

Created with Highcharts 10.0.0bumblebeeforagingsignificantimpactcognitiveindividualspotentialhumoralcellularimmunepathwaysforagersreducesfloralenvironmentsBumblebeesdecliningalarmingrateworldwideposingthreatfunctiondiversitytemperateecosystemsdeclinesattributedpartdirecteffectspecific pathogenssurvivalHoweverpathogensmayalsonegativehostpopulationsindirectlyimmune-induceddeficitsinfectedgaingreaterinsightmechanismsconservationimplications'immune-braincrosstalk'bumblebeesnon-pathogeneticallyactivatedtestedlong-termreductionsperformanceproficiencyshowchronicactivationeffectorssignificantlyabilityflexiblyefficientlyharvestresourcesmulti-sensoryleast7dayspost-treatmentHumoraldefenseresponsesthusconfercoststimeframesnegativelycolonygrowthreproductiveoutputnaturalconditionsfindingsindicatefitnesseffectsimmune-braincrosstalkconsideredattributingwilddeclineparticularpathogenspeciesImmune-cognitivesystemconnectivitysuccesscomplexmultisensory

Similar Articles

Cited By