Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth.

Mylène Tajan, Julie Pernin-Grandjean, Nicolas Beton, Isabelle Gennero, Florence Capilla, Benjamin G Neel, Toshiyuki Araki, Philippe Valet, Maithé Tauber, Jean-Pierre Salles, Armelle Yart, Thomas Edouard
Author Information
  1. Mylène Tajan: INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC).
  2. Julie Pernin-Grandjean: INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.
  3. Nicolas Beton: INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.
  4. Isabelle Gennero: INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.
  5. Florence Capilla: INSERM, US006, ANEXPLO/CREFRE, Histopathology Unit, Purpan Hospital, Toulouse, France.
  6. Benjamin G Neel: Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA.
  7. Toshiyuki Araki: Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA.
  8. Philippe Valet: INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC).
  9. Maithé Tauber: INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.
  10. Jean-Pierre Salles: INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.
  11. Armelle Yart: INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC).
  12. Thomas Edouard: INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.

Abstract

Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins. In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.

References

  1. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4736-41 [PMID: 19251646]
  2. Natl Sci Rev. 2015 Mar 1;2(1):85-99 [PMID: 26543666]
  3. Osteoarthritis Cartilage. 2014 Jul;22(7):996-1006 [PMID: 24852699]
  4. Cancer Commun. 1991 May;3(5):141-7 [PMID: 2043425]
  5. Dev Biol. 2001 Jan 1;229(1):141-62 [PMID: 11133160]
  6. Genes Dev. 2004 Feb 1;18(3):290-305 [PMID: 14871928]
  7. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4257-62 [PMID: 22371576]
  8. Hum Mol Genet. 2013 Aug 1;22(15):3048-62 [PMID: 23571107]
  9. J Clin Endocrinol Metab. 2005 Sep;90(9):5377-81 [PMID: 15985475]
  10. J Clin Endocrinol Metab. 2006 Jan;91(1):300-6 [PMID: 16263833]
  11. J Bone Miner Res. 2014 Mar;29(3):761-9 [PMID: 23929766]
  12. Nature. 2014 Sep 25;513(7519):507-11 [PMID: 25231866]
  13. J Orthop Res. 2010 Jan;28(1):110-5 [PMID: 19623662]
  14. Circulation. 2002 Oct 22;106(17):2231-7 [PMID: 12390953]
  15. Nature. 2013 Jul 25;499(7459):491-5 [PMID: 23863940]
  16. J Orthop Res. 2011 Mar;29(3):375-9 [PMID: 20922792]
  17. Spine (Phila Pa 1976). 2013 Oct 1;38(21):E1307-12 [PMID: 23873233]
  18. Mol Cell Biol. 2000 Jan;20(2):516-22 [PMID: 10611230]
  19. Pediatrics. 2010 Oct;126(4):746-59 [PMID: 20876176]
  20. Dis Model Mech. 2011 Mar;4(2):228-39 [PMID: 21068439]
  21. Mol Cell Biol. 2010 May;30(10 ):2498-507 [PMID: 20308328]
  22. J Clin Invest. 2007 Aug;117(8):2123-32 [PMID: 17641779]
  23. Nat Genet. 2001 Dec;29(4):465-8 [PMID: 11704759]
  24. Lancet Neurol. 2013 Nov;12(11):1076-83 [PMID: 24090588]
  25. Curr Genet Med Rep. 2016 Sep;4(3):57-64 [PMID: 27942422]
  26. Horm Res. 2005;64(4):157-65 [PMID: 16205094]
  27. Curr Biol. 2005 Nov 8;15(21):1961-7 [PMID: 16271875]
  28. Sci Rep. 2017 Oct 5;7(1):12699 [PMID: 28983104]
  29. Lancet. 2013 Jan 26;381(9863):333-42 [PMID: 23312968]
  30. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15436-41 [PMID: 19706403]
  31. Nat Med. 2004 Aug;10(8):849-57 [PMID: 15273746]
  32. BMC Bioinformatics. 2008 Nov 01;9:465 [PMID: 18976492]
  33. J Bone Miner Res. 2012 May;27(5):1055-66 [PMID: 22228213]
  34. Nat Protoc. 2008;3(8):1253-60 [PMID: 18714293]
  35. Nat Neurosci. 2014 Dec;17(12):1736-43 [PMID: 25383899]
  36. J Cell Biol. 1994 Dec;127(6 Pt 1):1755-66 [PMID: 7798324]
  37. Dis Model Mech. 2013 Nov;6(6):1448-58 [PMID: 24077964]
  38. Nature. 2003 May 15;423(6937):332-6 [PMID: 12748651]
  39. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18930-5 [PMID: 19017799]
  40. PLoS Genet. 2014 May 29;10(5):e1004364 [PMID: 24875294]
  41. Best Pract Res Clin Endocrinol Metab. 2011 Feb;25(1):161-79 [PMID: 21396583]
  42. JAMA. 2008 Jul 16;300(3):287-94 [PMID: 18632543]
  43. Aging (Albany NY). 2010 Dec;2(12):990-8 [PMID: 21098883]
  44. Mol Cell Biol. 2009 Nov;29(21):5843-57 [PMID: 19737917]
  45. Horm Res Paediatr. 2015;83(3):167-76 [PMID: 25721697]
  46. PLoS Genet. 2011 Apr;7(4):e1002050 [PMID: 21533187]
  47. J Bone Miner Res. 2015 May;30(5):765-74 [PMID: 25401279]

MeSH Term

Animals
Butadienes
Cell Differentiation
Cell Proliferation
Chondrocytes
Disease Models, Animal
Growth Plate
Humans
Insulin-Like Growth Factor I
MAP Kinase Signaling System
Nitriles
Noonan Syndrome
Protein Tyrosine Phosphatase, Non-Receptor Type 11

Chemicals

Butadienes
Nitriles
U 0126
insulin-like growth factor-1, mouse
Insulin-Like Growth Factor I
Protein Tyrosine Phosphatase, Non-Receptor Type 11

Word Cloud

Created with Highcharts 10.0.0growthNSSHP2mutantsplatehyperactivationmicechondrocytedifferentiationtreatmentRAS/ERKNS-causingimpairendochondralbonezoneNoonanhyperactive1IGF1signallingpathwayroledemonstratedreducedhypertrophicdecreasedchondrocytesabnormalitiesGrowthretardationconstantfeaturesyndromephysiopathologyremainspoorlyunderstoodpreviouslyreportedsystemicproductioninsulin-likefactorRAS/extracellularsignal-regulatedkinasesERKBesidesendocrinedefectsdirecteffectexploredalthoughrecentstudiesrevealedimportantphysiologicallengthmostlydueshorteninglesserextentproliferatinghistologicalfeaturescorrelatedexpressionearlymarkersalkalinephosphatasestainingactivitymurineprimaryAlthoughimprovedfullyreversenotablycontrastdocumentedlevelsinceenhanceactivationvivovitroATDC5cells2inhibitionU0126alleviatedenhancedSimilareffectsobtainedchronicstatinsconclusionlocalstatinmaypossibletherapeuticapproachsyndrome-causingERK-dependent

Similar Articles

Cited By