The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates.

Chris J Blackman, Sean M Gleason, Alicia M Cook, Yvonne Chang, Claire A Laws, Mark Westoby
Author Information
  1. Chris J Blackman: Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
  2. Sean M Gleason: Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
  3. Alicia M Cook: Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
  4. Yvonne Chang: Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
  5. Claire A Laws: Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
  6. Mark Westoby: Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.

Abstract

Background and Aims: The structural properties of leaf venation and xylem anatomy strongly influence leaf hydraulics, including the ability of leaves to maintain hydraulic function during drought. Here we examined the strength of the links between different leaf venation traits and leaf hydraulic vulnerability to drought (expressed as P50leaf by rehydration kinetics) in a diverse group of 26 woody angiosperm species, representing a wide range of leaf vulnerabilities, from four low-nutrient sites with contrasting rainfall across eastern Australia.
Methods: For each species we measured key aspects of leaf venation design, xylem anatomy and leaf morphology. We also assessed for the first time the scaling relationships between hydraulically weighted vessel wall thickness (th) and lumen breadth (bh) across vein orders and habitats.
Key Results: Across species, variation in P50leaf was strongly correlated with the ratio of vessel wall thickness (th) to lumen breadth (bh) [(t/b)h; an index of conduit reinforcement] at each leaf vein order. Concomitantly, the scaling relationship between th and bh was similar across vein orders, with a log-log slope less than 1 indicating greater xylem reinforcement in smaller vessels. In contrast, P50leaf was not related to th and bh individually, to major vein density (Dvmajor) or to leaf size. Principal components analysis revealed two largely orthogonal trait groupings linked to variation in leaf size and drought tolerance.
Conclusions: Our results indicate that xylem conduit reinforcement occurs throughout leaf venation, and remains closely linked to leaf drought tolerance irrespective of leaf size.

References

  1. New Phytol. 2009;184(1):234-244 [PMID: 19674329]
  2. Am J Bot. 2009 Feb;96(2):409-19 [PMID: 21628196]
  3. New Phytol. 2017 Feb;213(3):1076-1092 [PMID: 27861926]
  4. Plant Physiol. 2007 Aug;144(4):1890-8 [PMID: 17556506]
  5. Plant Physiol. 2009 Jan;149(1):575-84 [PMID: 19011001]
  6. New Phytol. 2007;175(4):686-698 [PMID: 17688584]
  7. Plant Cell Environ. 2012 May;35(5):857-71 [PMID: 22070647]
  8. New Phytol. 2010 Dec;188(4):1113-23 [PMID: 20738785]
  9. J Exp Bot. 2007;58(15-16):4119-29 [PMID: 18065766]
  10. Am J Bot. 2013 Aug;100(8):1483-93 [PMID: 23935111]
  11. New Phytol. 2018 Jun;218(4):1360-1370 [PMID: 29603233]
  12. Ecology. 2006 Feb;87(2):483-91 [PMID: 16637372]
  13. Science. 2017 Sep 1;357(6354):917-921 [PMID: 28860384]
  14. New Phytol. 2013 Aug;199(3):720-6 [PMID: 23668223]
  15. Am J Bot. 2006 Sep;93(9):1265-73 [PMID: 21642190]
  16. Oecologia. 2001 Feb;126(4):457-461 [PMID: 28547229]
  17. Ann Bot. 2014 Sep;114(3):435-40 [PMID: 25006181]
  18. New Phytol. 2017 Apr;214(2):561-569 [PMID: 28124474]
  19. Plant Cell Environ. 2009 Jul;32(7):828-36 [PMID: 19220781]
  20. Am J Bot. 2011 Feb;98(2):244-53 [PMID: 21613113]
  21. Proc Natl Acad Sci U S A. 2015 May 5;112(18):5744-9 [PMID: 25902534]
  22. Trends Plant Sci. 2015 Apr;20(4):199-205 [PMID: 25680733]
  23. Plant Cell Environ. 2008 Dec;31(12):1803-12 [PMID: 18771574]
  24. Am J Bot. 2015 Mar;102(3):367-78 [PMID: 25784470]
  25. J Exp Bot. 2002 Nov;53(378):2177-84 [PMID: 12379784]
  26. Ecol Evol. 2015 Dec 29;6(1):267-78 [PMID: 26811791]
  27. Plant Physiol. 2011 Jun;156(2):832-43 [PMID: 21511989]
  28. New Phytol. 2013 Jun;198(4):983-1000 [PMID: 23600478]
  29. Plant Cell Environ. 2015 Dec;38(12):2652-61 [PMID: 26032606]
  30. Biol Rev Camb Philos Soc. 2006 May;81(2):259-91 [PMID: 16573844]
  31. Oecologia. 2012 Jan;168(1):1-10 [PMID: 21744163]
  32. Plant Physiol. 2003 Aug;132(4):2166-73 [PMID: 12913171]
  33. Plant Physiol. 2004 Jan;134(1):401-8 [PMID: 14657404]
  34. Plant Physiol. 2005 Mar;137(3):1139-46 [PMID: 15734905]
  35. New Phytol. 2011 May;190(3):724-39 [PMID: 21294735]
  36. Plant Physiol. 2017 Feb;173(2):1197-1210 [PMID: 28049739]
  37. J Exp Bot. 2016 Sep;67(17):5029-39 [PMID: 27388214]
  38. New Phytol. 2017 Sep;215(4):1399-1412 [PMID: 28620915]
  39. Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4865-9 [PMID: 27071104]
  40. Funct Plant Biol. 2014 Sep;41(9):972-982 [PMID: 32481050]
  41. New Phytol. 2016 Mar;209(4):1403-9 [PMID: 26742653]
  42. Ecol Lett. 2010 Feb;13(2):175-83 [PMID: 19968696]
  43. Plant Physiol. 2005 Sep;139(1):546-56 [PMID: 16100359]
  44. Nat Commun. 2012 May 15;3:837 [PMID: 22588299]
  45. Plant Physiol. 2014 Apr;164(4):1772-88 [PMID: 24306532]
  46. New Phytol. 2012 Nov;196(3):788-798 [PMID: 22978628]
  47. Plant Physiol. 2015 Aug;168(4):1616-35 [PMID: 26084922]
  48. Plant Physiol. 2016 Dec;172(4):2261-2274 [PMID: 27733514]

MeSH Term

Australia
Climate
Droughts
Environment
Magnoliopsida
Plant Leaves
Plant Transpiration
Wood
Xylem

Word Cloud

Created with Highcharts 10.0.0leafvenationxylemdroughtthbhveinanatomyhydraulicP50leafspeciesacrosssizestronglylinksvulnerability26woodycontrastingkeyaspectsscalingvesselwallthicknesslumenbreadthordersvariationconduitreinforcementlinkedtoleranceBackgroundAims:structuralpropertiesinfluencehydraulicsincludingabilityleavesmaintainfunctionexaminedstrengthdifferenttraitsexpressedrehydrationkineticsdiversegroupangiospermrepresentingwiderangevulnerabilitiesfourlow-nutrientsitesrainfalleasternAustraliaMethods:measureddesignmorphologyalsoassessedfirsttimerelationshipshydraulicallyweightedhabitatsKeyResults:Acrosscorrelatedratio[t/bhindexreinforcement]orderConcomitantlyrelationshipsimilarlog-logslopeless1indicatinggreatersmallervesselscontrastrelatedindividuallymajordensityDvmajorPrincipalcomponentsanalysisrevealedtwolargelyorthogonaltraitgroupingsConclusions:resultsindicateoccursthroughoutremainscloselyirrespectiveamongAustralianangiospermsclimates

Similar Articles

Cited By