Cyproheptadine Regulates Pyramidal Neuron Excitability in Mouse Medial Prefrontal Cortex.

Yan-Lin He, Kai Wang, Qian-Ru Zhao, Yan-Ai Mei
Author Information
  1. Yan-Lin He: Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China. heyanlin@126.com.
  2. Kai Wang: Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China.
  3. Qian-Ru Zhao: Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China.
  4. Yan-Ai Mei: Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, 200433, China. yamei@fudan.edu.cn.

Abstract

Cyproheptadine (CPH), a first-generation antihistamine, enhances the delayed rectifier outward K current (I) in mouse cortical neurons through a sigma-1 receptor-mediated protein kinase A pathway. In this study, we aimed to determine the effects of CPH on neuronal excitability in current-clamped pyramidal neurons in mouse medial prefrontal cortex slices. CPH (10 µmol/L) significantly reduced the current density required to generate action potentials (APs) and increased the instantaneous frequency evoked by a depolarizing current. CPH also depolarized the resting membrane potential (RMP), decreased the delay time to elicit an AP, and reduced the spike threshold potential. This effect of CPH was mimicked by a sigma-1 receptor agonist and eliminated by an antagonist. Application of tetraethylammonium (TEA) to block I channels hyperpolarized the RMP and reduced the instantaneous frequency of APs. TEA eliminated the effects of CPH on AP frequency and delay time, but had no effect on spike threshold or RMP. The current-voltage relationship showed that CPH increased the membrane depolarization in response to positive current pulses and hyperpolarization in response to negative current pulses, suggesting that other types of membrane ion channels might also be affected by CPH. These results suggest that CPH increases the excitability of medial prefrontal cortex neurons by regulating TEA-sensitive I channels as well as other TEA-insensitive K channels, probably I and inward-rectifier Kir channels. This effect of CPH may explain its apparent clinical efficacy as an antidepressant and antipsychotic.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7719-7724 [PMID: 28673977]
  2. Pharmacol Ther. 2009 Nov;124(2):195-206 [PMID: 19619582]
  3. Neuroscience. 2006 Apr 28;139(1):251-61 [PMID: 16325345]
  4. J Med Chem. 1977 Jun;20(6):836-8 [PMID: 17748]
  5. Cereb Cortex. 2017 Jul 1;27(7):3842-3855 [PMID: 28475719]
  6. BMC Cancer. 2015 Mar 17;15:134 [PMID: 25886177]
  7. J Neurophysiol. 2016 May 1;115(5):2317-29 [PMID: 26864770]
  8. Biol Psychiatry. 2010 Feb 1;67(3):199-207 [PMID: 19833323]
  9. Eur J Haematol. 2013 Dec;91(6):514-21 [PMID: 24033664]
  10. PLoS One. 2012;7(7):e41303 [PMID: 22844454]
  11. J Neurosci. 2014 Apr 2;34(14):4991-5002 [PMID: 24695716]
  12. J Neurosci Res. 2012 Jan;90(1):324-36 [PMID: 21953584]
  13. Neurotoxicology. 2017 Jan;58:153-160 [PMID: 27988303]
  14. J Allergy Clin Immunol. 1989 Dec;84(6 Pt 1):845-61 [PMID: 2574731]
  15. Acta Pharmacol Sin. 2017 Sep;38(9):1248-1256 [PMID: 28603289]
  16. Trends Neurosci. 2012 Dec;35(12):762-71 [PMID: 23102998]
  17. Eur J Pharmacol. 1987 Jul 23;139(3):307-13 [PMID: 3666007]
  18. Neuron. 2012 Oct 4;76(1):223-39 [PMID: 23040817]
  19. Physiol Rev. 2010 Jan;90(1):291-366 [PMID: 20086079]
  20. J Physiol. 2002 Mar 1;539(Pt 2):469-83 [PMID: 11882679]
  21. J Psychopharmacol. 2007 Mar;21(2):179-90 [PMID: 17329298]
  22. Trends Pharmacol Sci. 2010 Dec;31(12):557-66 [PMID: 20869780]
  23. J Neurosci. 2010 Sep 22;30(38):12885-95 [PMID: 20861392]
  24. South Med J. 2006 Jun;99(6):593-9 [PMID: 16800414]
  25. Cell. 2013 Jan 17;152(1-2):236-47 [PMID: 23332758]
  26. Acta Pharmacol Sin. 2016 Jan;37(1):67-74 [PMID: 26725736]
  27. Eur J Pharmacol. 2005 Jan 4;506(3):257-64 [PMID: 15627436]
  28. Prog Neurobiol. 2001 Feb;63(3):241-320 [PMID: 11115727]
  29. Am J Physiol Heart Circ Physiol. 2009 Jun;296(6):H1940-8 [PMID: 19346455]

MeSH Term

Animals
Cyproheptadine
Female
Histamine H1 Antagonists
Membrane Potentials
Mice, Inbred C57BL
Patch-Clamp Techniques
Potassium Channel Blockers
Potassium Channels
Prefrontal Cortex
Pyramidal Cells
Receptors, sigma
Tetraethylammonium
Tissue Culture Techniques

Chemicals

Histamine H1 Antagonists
Potassium Channel Blockers
Potassium Channels
Receptors, sigma
Cyproheptadine
Tetraethylammonium

Word Cloud

Created with Highcharts 10.0.0CPHcurrentchannelsneuronsCyproheptadineKexcitabilityreducedfrequencymembraneRMPeffectmousecorticalsigma-1effectsmedialprefrontalcortexAPsincreasedinstantaneousalsopotentialdelaytimeAPspikethresholdreceptoreliminatedTEAresponsepulsesfirst-generationantihistamineenhancesdelayedrectifieroutwardreceptor-mediatedproteinkinasepathwaystudyaimeddetermineneuronalcurrent-clampedpyramidalslices10µmol/LsignificantlydensityrequiredgenerateactionpotentialsevokeddepolarizingdepolarizedrestingdecreasedelicitmimickedagonistantagonistApplicationtetraethylammoniumblockhyperpolarizedcurrent-voltagerelationshipshoweddepolarizationpositivehyperpolarizationnegativesuggestingtypesionmightaffectedresultssuggestincreasesregulatingTEA-sensitivewellTEA-insensitiveprobablyinward-rectifierKirmayexplainapparentclinicalefficacyantidepressantantipsychoticRegulatesPyramidalNeuronExcitabilityMouseMedialPrefrontalCortexNeuronalSigma-1Tetraethylammonium-sensitive

Similar Articles

Cited By