KDiamend: a package for detecting key drivers in a molecular ecological network of disease.

Mengxuan Lyu, Jiaxing Chen, Yiqi Jiang, Wei Dong, Zhou Fang, Shuaicheng Li
Author Information
  1. Mengxuan Lyu: Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
  2. Jiaxing Chen: Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
  3. Yiqi Jiang: Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
  4. Wei Dong: Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
  5. Zhou Fang: Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
  6. Shuaicheng Li: Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China. shuaicli@gmail.com.

Abstract

BACKGROUND: Microbial abundance profiles are applied widely to understand diseases from the aspect of microbial communities. By investigating the abundance associations of species or genes, we can construct molecular ecological networks (MENs). The MENs are often constructed by calculating the Pearson correlation coefficient (PCC) between genes. In this work, we also applied multimodal mutual information (MMI) to construct MENs. The members which drive the concerned MENs are referred to as key drivers.
RESULTS: We proposed a novel method to detect the key drivers. First, we partitioned the MEN into subnetworks. Then we identified the most pertinent subnetworks to the disease by measuring the correlation between the abundance pattern and the delegated phenotype-the variable representing the disease phenotypes. Last, for each identified subnetwork, we detected the key driver by PageRank. We developed a package named KDiamend and applied it to the gut and oral microbial data to detect key drivers for Type 2 diabetes (T2D) and Rheumatoid Arthritis (RA). We detected six T2D-relevant subnetworks and three key drivers of them are related to the carbohydrate metabolic process. In addition, we detected nine subnetworks related to RA, a disease caused by compromised immune systems. The extracted subnetworks include InterPro matches (IPRs) concerned with immunoglobulin, Sporulation, biofilm, Flaviviruses, bacteriophage, etc., while the development of biofilms is regarded as one of the drivers of persistent infections.
CONCLUSION: KDiamend is feasible to detect key drivers and offers insights to uncover the development of diseases. The package is freely available at http://www.deepomics.org/pipelines/3DCD6955FEF2E64A/ .

Keywords

References

  1. Nat Immunol. 2015 Mar;16(3):229-36 [PMID: 25689443]
  2. Gene. 2013 Apr 10;518(1):209-14 [PMID: 23246976]
  3. Nat Commun. 2015 Oct 30;6:8727 [PMID: 26515465]
  4. Nature. 2012 Oct 4;490(7418):55-60 [PMID: 23023125]
  5. Am J Med Genet A. 2014 Dec;164A(12):3132-6 [PMID: 25257335]
  6. Front Microbiol. 2014 May 20;5:219 [PMID: 24904535]
  7. BMC Syst Biol. 2007 Nov 21;1:54 [PMID: 18031580]
  8. Clin Microbiol Infect. 2014 Oct;20(10):981-90 [PMID: 24766583]
  9. Am J Clin Nutr. 2000 Apr;71(4):921-30 [PMID: 10731498]
  10. Philos Trans R Soc Lond B Biol Sci. 2015 Aug 19;370(1675):null [PMID: 26150660]
  11. Cell Syst. 2016 Mar 23;2(3):196-208 [PMID: 27135365]
  12. PLoS Comput Biol. 2015 May 07;11(5):e1004226 [PMID: 25950956]
  13. PLoS Biol. 2007 Jan;5(1):e8 [PMID: 17214507]
  14. Mol Biol Evol. 2013 Jun;30(6):1384-96 [PMID: 23519315]
  15. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  16. Phys Rev A Gen Phys. 1986 Feb;33(2):1134-1140 [PMID: 9896728]
  17. Nucleic Acids Res. 2017 Jan 4;45(D1):D190-D199 [PMID: 27899635]
  18. J Mol Biol. 1994 Sep 30;242(4):309-20 [PMID: 7932691]
  19. PLoS Comput Biol. 2014 Apr 03;10(4):e1003531 [PMID: 24699258]
  20. BMC Bioinformatics. 2012 May 30;13:113 [PMID: 22646978]
  21. DNA Res. 1996 Oct 31;3(5):311-20 [PMID: 9039501]
  22. Immunology. 1999 Jun;97(2):188-96 [PMID: 10447731]
  23. PLoS Comput Biol. 2011 Dec;7(12):e1002318 [PMID: 22215998]
  24. Nat Med. 2015 Aug;21(8):895-905 [PMID: 26214836]
  25. BMC Bioinformatics. 2010 Feb 18;11:94 [PMID: 20167110]
  26. Mol Syst Biol. 2015 Apr 16;11(1):799 [PMID: 25882670]
  27. Nat Methods. 2013 Dec;10(12):1200-2 [PMID: 24076764]
  28. BMC Bioinformatics. 2013 Apr 11;14:124 [PMID: 23578321]
  29. PLoS Comput Biol. 2015 Nov 30;11(11):e1004574 [PMID: 26618778]
  30. Eur J Neurosci. 2006 Sep;24(5):1237-44 [PMID: 16965550]
  31. Science. 2004 Feb 6;303(5659):799-805 [PMID: 14764868]
  32. Protein Eng. 1999 Jul;12(7):563-71 [PMID: 10436082]
  33. Pol Arch Med Wewn. 2013;123(6):309-13 [PMID: 23828150]
  34. Environ Microbiol. 2016 Jan;18(1):205-18 [PMID: 26177312]
  35. Cell. 2013 Apr 25;153(3):707-20 [PMID: 23622250]
  36. ISME J. 2016 Jul;10 (7):1669-81 [PMID: 26905627]

MeSH Term

Arthritis, Rheumatoid
Computational Biology
Diabetes Mellitus, Type 2
Gastrointestinal Microbiome
Humans
Microbiota
Mouth
Phenotype

Word Cloud

Created with Highcharts 10.0.0keydriverssubnetworksMENsdiseaseabundanceappliedecologicaldetectdetectedpackagediseasesmicrobialgenesconstructmolecularcorrelationconcernedidentifieddriverKDiamendRArelateddevelopmentnetworkBACKGROUND:MicrobialprofileswidelyunderstandaspectcommunitiesinvestigatingassociationsspeciescannetworksoftenconstructedcalculatingPearsoncoefficientPCCworkalsomultimodalmutualinformationMMImembersdrivereferredRESULTS:proposednovelmethodFirstpartitionedMENpertinentmeasuringpatterndelegatedphenotype-thevariablerepresentingphenotypesLastsubnetworkPageRankdevelopednamedgutoraldataType2diabetesT2DRheumatoidArthritissixT2D-relevantthreecarbohydratemetabolicprocessadditionninecausedcompromisedimmunesystemsextractedincludeInterPromatchesIPRsimmunoglobulinSporulationbiofilmFlavivirusesbacteriophageetcbiofilmsregardedonepersistentinfectionsCONCLUSION:feasibleoffersinsightsuncoverfreelyavailablehttp://wwwdeepomicsorg/pipelines/3DCD6955FEF2E64A/KDiamend:detectingDelegatedphenotypeDiseaseKeyMicrobiomeMolecular

Similar Articles

Cited By