Geographical information system (GIS) modeling territory receptivity to strengthen entomological surveillance: Anopheles (Nyssorhynchus) case study in Rio de Janeiro State, Brazil.

Hermano Gomes Albuquerque, Paulo Cesar Peiter, Luciano M Toledo, Jeronimo A F Alencar, Paulo C Sabroza, Cristina G Dias, Jefferson P C Santos, Martha C Suárez-Mutis
Author Information
  1. Hermano Gomes Albuquerque: Laboratório de Doenças Parasitárias, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil. hermanofio@gmail.com.
  2. Paulo Cesar Peiter: Laboratório de Doenças Parasitárias, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
  3. Luciano M Toledo: Laboratório de Monitoramento Epidemiológico de Grandes Empreendimentos, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
  4. Jeronimo A F Alencar: Laboratório de Diptera, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
  5. Paulo C Sabroza: Laboratório de Monitoramento Epidemiológico de Grandes Empreendimentos, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
  6. Cristina G Dias: Secretaria de Estado de Saúde do Rio de Janeiro, R. México, 128 Centro, Rio de Janeiro, RJ, 20031-142, Brazil.
  7. Jefferson P C Santos: Laboratório de Monitoramento Epidemiológico de Grandes Empreendimentos, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
  8. Martha C Suárez-Mutis: Laboratório de Doenças Parasitárias, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.

Abstract

BACKGROUND: Extra-Amazonian malaria mortality is 60 times higher than the Amazon malaria mortality. Imported cases correspond to approximately 90% of extra-Amazonian cases. Imported malaria could be a major problem if it occurs in areas with receptivity, because it can favor the occurrence of outbreaks or reintroductions of malaria in those areas. This study aimed to model territorial receptivity for malaria to serve as an entomological surveillance tool in the State of Rio de Janeiro, Brazil. Geomorphology, rainfall, temperature, and vegetation layers were used in the AHP process for the receptivity stratification of Rio de Janeiro State territory.
RESULTS: The model predicted five receptivity classes: very low, low, medium, high and very high. The 'very high' class is the most important in the receptivity model, corresponding to areas with optimal environmental and climatological conditions to provide suitable larval habitats for Anopheles (Nyssorhynchus) vectors. This receptivity class covered 497.14 km or 1.18% of the state's area. The 'high' class covered the largest area, 17,557.98 km, or 41.62% of the area of Rio de Janeiro State.
CONCLUSIONS: We used freely available databases for modeling the distribution of receptive areas for malaria transmission in the State of Rio de Janeiro. This was a new and low-cost approach to support entomological surveillance efforts. Health workers in 'very high' and 'high' receptivity areas should be prepared to diagnose all febrile individuals and determine the cause of the fever, including malaria. Each malaria case must be treated and epidemiological studies must be conducted to prevent the reintroduction of the disease.

Keywords

References

  1. Malar J. 2013 Jan 08;12:10 [PMID: 23298401]
  2. Science. 2008 Jun 13;320(5882):1444-9 [PMID: 18556546]
  3. Rev Soc Bras Med Trop. 2008 May-Jun;41(3):232-7 [PMID: 18719800]
  4. Mem Inst Oswaldo Cruz. 2014 Aug;109(5):618-33 [PMID: 25185003]
  5. Malar J. 2012 Apr 24;11:122 [PMID: 22531245]
  6. Geospat Health. 2015 Jun 03;10(1):302 [PMID: 26054511]
  7. Am J Prev Med. 2008 Nov;35(5):436-50 [PMID: 18929970]
  8. Glob Health Action. 2009 Nov 11;2:null [PMID: 20052428]
  9. Mem Inst Oswaldo Cruz. 2009 Jul;104(4):570-5 [PMID: 19722078]
  10. Hist Cienc Saude Manguinhos. 2002;9 Suppl:233-73 [PMID: 12918493]
  11. Mem Inst Oswaldo Cruz. 2014 Aug;109(5):634-40 [PMID: 25185004]
  12. Malar J. 2010 Apr 30;9:115 [PMID: 20433744]

MeSH Term

Animal Distribution
Animals
Anopheles
Brazil
Epidemiological Monitoring
Geographic Information Systems
Humans
Malaria
Mosquito Vectors
Spatial Analysis
Topography, Medical

Word Cloud

Created with Highcharts 10.0.0malariareceptivityareasStateRiodeJaneiromodelentomologicalclassAnophelesareamortalityImportedcasesstudysurveillanceBrazilusedterritorylowhigh'veryhigh'Nyssorhynchuscoveredkm'high'modelingcasemustGISBACKGROUND:Extra-Amazonian60timeshigherAmazoncorrespondapproximately90%extra-AmazonianmajorproblemoccurscanfavoroccurrenceoutbreaksreintroductionsaimedterritorialservetoolGeomorphologyrainfalltemperaturevegetationlayersAHPprocessstratificationRESULTS:predictedfiveclasses:mediumimportantcorrespondingoptimalenvironmentalclimatologicalconditionsprovidesuitablelarvalhabitatsvectors49714118%state'slargest17557984162%CONCLUSIONS:freelyavailabledatabasesdistributionreceptivetransmissionnewlow-costapproachsupporteffortsHealthworkersprepareddiagnosefebrileindividualsdeterminecausefeverincludingtreatedepidemiologicalstudiesconductedpreventreintroductiondiseaseGeographicalinformationsystemstrengthensurveillance:GeoprocessingMalariaReceptivitySurveillanceVector

Similar Articles

Cited By