Sensitivity Analysis for Not-at-Random Missing Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial.

Baptiste Leurent, Manuel Gomes, Rita Faria, Stephen Morris, Richard Grieve, James R Carpenter
Author Information
  1. Baptiste Leurent: Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK. baptiste.leurent@lshtm.ac.uk. ORCID
  2. Manuel Gomes: Department of Applied Health Research, University College London, London, UK. ORCID
  3. Rita Faria: Centre for Health Economics, University of York, York, UK.
  4. Stephen Morris: Department of Applied Health Research, University College London, London, UK.
  5. Richard Grieve: Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK.
  6. James R Carpenter: Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.

Abstract

Cost-effectiveness analyses (CEA) of randomised controlled trials are a key source of information for health care decision makers. Missing data are, however, a common issue that can seriously undermine their validity. A major concern is that the chance of data being missing may be directly linked to the unobserved value itself [missing not at random (MNAR)]. For example, patients with poorer health may be less likely to complete quality-of-life questionnaires. However, the extent to which this occurs cannot be ascertained from the data at hand. Guidelines recommend conducting sensitivity analyses to assess the robustness of conclusions to plausible MNAR assumptions, but this is rarely done in practice, possibly because of a lack of practical guidance. This tutorial aims to address this by presenting an accessible framework and practical guidance for conducting sensitivity analysis for MNAR data in trial-based CEA. We review some of the methods for conducting sensitivity analysis, but focus on one particularly accessible approach, where the data are multiply-imputed and then modified to reflect plausible MNAR scenarios. We illustrate the implementation of this approach on a weight-loss trial, providing the software code. We then explore further issues around its use in practice.

References

  1. Health Policy. 1990 Dec;16(3):199-208 [PMID: 10109801]
  2. Stat Med. 1999 Mar 30;18(6):681-94 [PMID: 10204197]
  3. Stat Med. 2000 Dec 15;19(23):3219-36 [PMID: 11113956]
  4. Health Econ. 2003 May;12(5):377-92 [PMID: 12720255]
  5. N Engl J Med. 2003 May 22;348(21):2136-7 [PMID: 12761370]
  6. Biostatistics. 2002 Jun;3(2):245-65 [PMID: 12933616]
  7. Health Econ. 2004 May;13(5):405-15 [PMID: 15127421]
  8. Appl Health Econ Health Policy. 2005;4(2):65-75 [PMID: 16162026]
  9. Clin Trials. 2007;4(2):125-39 [PMID: 17456512]
  10. Clin Trials. 2007;4(2):154-61 [PMID: 17456514]
  11. Stat Methods Med Res. 2007 Jun;16(3):259-75 [PMID: 17621471]
  12. Eur J Health Econ. 2009 Feb;10(1):1-3 [PMID: 18936993]
  13. BMJ. 2009 Jun 29;338:b2393 [PMID: 19564179]
  14. Pharm Stat. 2010 Oct-Dec;9(4):288-97 [PMID: 19844946]
  15. Biom J. 2010 Feb;52(1):111-25 [PMID: 19937996]
  16. Med Decis Making. 1990 Jul-Sep;10(3):212-4 [PMID: 2115096]
  17. Stat Med. 2011 Feb 20;30(4):377-99 [PMID: 21225900]
  18. BMJ. 2011 Feb 07;342:d40 [PMID: 21300711]
  19. Health Econ. 2012 Feb;21(2):187-200 [PMID: 22223561]
  20. BMC Public Health. 2012 Aug 16;12:667 [PMID: 22898059]
  21. N Engl J Med. 2012 Oct 4;367(14):1355-60 [PMID: 23034025]
  22. Pharm Stat. 2013 Nov-Dec;12(6):337-47 [PMID: 23292975]
  23. J Biopharm Stat. 2013;23(6):1352-71 [PMID: 24138436]
  24. Pharmacoeconomics. 2014 Dec;32(12):1157-70 [PMID: 25069632]
  25. BMC Med Res Methodol. 2014 Nov 19;14:118 [PMID: 25407057]
  26. BMC Med Res Methodol. 2015 Apr 07;15:30 [PMID: 25880850]
  27. Stat Med. 2016 Jul 30;35(17):2876-9 [PMID: 26567763]
  28. Int J Obes (Lond). 2017 Feb;41(2):246-254 [PMID: 27867204]
  29. Clin Trials. 2017 Aug;14(4):357-367 [PMID: 28675302]
  30. Health Econ. 2018 Jun;27(6):1024-1040 [PMID: 29573044]
  31. BMJ Open. 2018 Aug 13;8(8):e017511 [PMID: 30104307]
  32. Med Care. 1997 Nov;35(11):1095-108 [PMID: 9366889]
  33. Stat Med. 1998 Dec 15;17(23):2723-32 [PMID: 9881418]

Grants

  1. DRF-2015-08-047/Department of Health
  2. MC_UU_12023/21/Medical Research Council
  3. SRF-2013-06-016/Department of Health
  4. DRF-12437/Department of Health

MeSH Term

Cost-Benefit Analysis
Data Interpretation, Statistical
Humans
Randomized Controlled Trials as Topic

Word Cloud

Created with Highcharts 10.0.0dataMNARconductingsensitivityanalysesCEAhealthMissingmayplausiblepracticepracticalguidanceaccessibleanalysisapproachCost-effectivenessrandomisedcontrolledtrialskeysourceinformationcaredecisionmakershowevercommonissuecanseriouslyunderminevaliditymajorconcernchancemissingdirectlylinkedunobservedvalue[missingrandom]examplepatientspoorerlesslikelycompletequality-of-lifequestionnairesHoweverextentoccursascertainedhandGuidelinesrecommendassessrobustnessconclusionsassumptionsrarelydonepossiblylacktutorialaimsaddresspresentingframeworktrial-basedreviewmethodsfocusoneparticularlymultiply-imputedmodifiedreflectscenariosillustrateimplementationweight-losstrialprovidingsoftwarecodeexploreissuesarounduseSensitivityAnalysisNot-at-RandomDataTrial-BasedCost-EffectivenessAnalysis:Tutorial

Similar Articles

Cited By (53)