Two-phase differential expression analysis for single cell RNA-seq.

Zhijin Wu, Yi Zhang, Michael L Stitzel, Hao Wu
Author Information
  1. Zhijin Wu: Department of Biostatistics, Brown University, Providence, RI, USA.
  2. Yi Zhang: Department of Biostatistics, Brown University, Providence, RI, USA.
  3. Michael L Stitzel: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
  4. Hao Wu: Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA.

Abstract

Motivation: Single-cell RNA-sequencing (scRNA-seq) has brought the study of the transcriptome to higher resolution and makes it possible for scientists to provide answers with more clarity to the question of 'differential expression'. However, most computational methods still stick with the old mentality of viewing differential expression as a simple 'up or down' phenomenon. We advocate that we should fully embrace the features of single cell data, which allows us to observe binary (from Off to On) as well as continuous (the amount of expression) regulations.
Results: We develop a method, termed SC2P, that first identifies the phase of expression a gene is in, by taking into account of both cell- and gene-specific contexts, in a model-based and data-driven fashion. We then identify two forms of transcription regulation: phase transition, and magnitude tuning. We demonstrate that compared with existing methods, SC2P provides substantial improvement in sensitivity without sacrificing the control of false discovery, as well as better robustness. Furthermore, the analysis provides better interpretation of the nature of regulation types in different genes.
Availability and implementation: SC2P is implemented as an open source R package publicly available at https://github.com/haowulab/SC2P.
Supplementary information: Supplementary data are available at Bioinformatics online.

References

  1. Nat Methods. 2011 Nov 20;9(1):72-4 [PMID: 22101854]
  2. Nat Neurosci. 2015 Jan;18(1):145-53 [PMID: 25420068]
  3. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  4. Nat Rev Genet. 2015 Mar;16(3):133-45 [PMID: 25628217]
  5. Nat Methods. 2014 Jul;11(7):740-2 [PMID: 24836921]
  6. Genome Res. 2017 Feb;27(2):208-222 [PMID: 27864352]
  7. BMC Bioinformatics. 2016 Feb 29;17:110 [PMID: 26927822]
  8. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  9. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  10. Nature. 2012 Sep 6;489(7414):75-82 [PMID: 22955617]
  11. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  12. Nature. 2014 Jun 19;510(7505):363-9 [PMID: 24919153]
  13. Nat Methods. 2018 Jul;15(7):539-542 [PMID: 29941873]
  14. Nat Methods. 2014 Feb;11(2):163-6 [PMID: 24363023]
  15. Genome Biol. 2016 Apr 07;17:63 [PMID: 27052890]
  16. Nat Biotechnol. 2012 Aug;30(8):777-82 [PMID: 22820318]
  17. Cell. 2016 Aug 25;166(5):1308-1323.e30 [PMID: 27565351]
  18. Nat Rev Mol Cell Biol. 2015 Mar;16(3):178-89 [PMID: 25650798]
  19. PLoS Biol. 2006 Oct;4(10):e309 [PMID: 17048983]
  20. J Neurosci. 2014 Sep 3;34(36):11929-47 [PMID: 25186741]
  21. Nat Methods. 2013 Nov;10(11):1096-8 [PMID: 24056875]
  22. Genome Biol. 2016 Jul 01;17(1):144 [PMID: 27368803]
  23. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90 [PMID: 26060301]
  24. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  25. Nature. 2015 Jul 23;523(7561):486-90 [PMID: 26083756]
  26. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  27. Biostatistics. 2013 Apr;14(2):232-43 [PMID: 23001152]
  28. Genome Biol. 2016 Oct 25;17(1):222 [PMID: 27782827]
  29. Nucleic Acids Res. 2011 Jan;39(Database issue):D1011-5 [PMID: 21177656]
  30. Bioinformatics. 2016 Jul 15;32(14):2128-35 [PMID: 27153638]
  31. Nature. 2013 Jun 13;498(7453):236-40 [PMID: 23685454]
  32. Bioinformatics. 2007 Nov 1;23(21):2881-7 [PMID: 17881408]
  33. Nat Methods. 2017 May;14(5):483-486 [PMID: 28346451]
  34. Nat Biotechnol. 2013 Aug;31(8):748-52 [PMID: 23873083]
  35. Nucleic Acids Res. 2014 Jan;42(Database issue):D938-43 [PMID: 24271388]
  36. Genome Biol. 2017 Mar 28;18(1):59 [PMID: 28351406]
  37. Nature. 2015 Sep 10;525(7568):251-5 [PMID: 26287467]
  38. Genome Biol. 2016 May 26;17(1):112 [PMID: 27230763]
  39. Nat Rev Mol Cell Biol. 2015 Mar;16(3):167-77 [PMID: 25693130]
  40. Nat Biotechnol. 2015 Feb;33(2):155-60 [PMID: 25599176]
  41. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17454-9 [PMID: 23064634]
  42. Genome Biol. 2014;15(12):550 [PMID: 25516281]

Grants

  1. R01 GM122083/NIGMS NIH HHS
  2. P20 GM109035/NIGMS NIH HHS

MeSH Term

Gene Expression Regulation
Humans
RNA
Sequence Analysis, RNA
Software
Transcriptome

Chemicals

RNA

Word Cloud

Created with Highcharts 10.0.0expressionSC2PmethodsdifferentialsinglecelldatawellphaseprovidesbetteranalysisavailableMotivation:Single-cellRNA-sequencingscRNA-seqbroughtstudytranscriptomehigherresolutionmakespossiblescientistsprovideanswersclarityquestion'differentialexpression'Howevercomputationalstillstickoldmentalityviewingsimple'updown'phenomenonadvocatefullyembracefeaturesallowsusobservebinarycontinuousamountregulationsResults:developmethodtermedfirstidentifiesgenetakingaccountcell-gene-specificcontextsmodel-baseddata-drivenfashionidentifytwoformstranscriptionregulation:transitionmagnitudetuningdemonstratecomparedexistingsubstantialimprovementsensitivitywithoutsacrificingcontrolfalsediscoveryrobustnessFurthermoreinterpretationnatureregulationtypesdifferentgenesAvailabilityimplementation:implementedopensourceRpackagepubliclyhttps://githubcom/haowulab/SC2PSupplementaryinformation:SupplementaryBioinformaticsonlineTwo-phaseRNA-seq

Similar Articles

Cited By (18)