Efficient Computational Design of a Scaffold for Cartilage Cell Regeneration.

Tannaz Tajsoleiman, Mohammad Jafar Abdekhodaie, Krist V Gernaey, Ulrich Krühne
Author Information
  1. Tannaz Tajsoleiman: Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark. tantaj@kt.dtu.dk.
  2. Mohammad Jafar Abdekhodaie: Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran. abdmj@sharif.edu.
  3. Krist V Gernaey: Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark. kvg@kt.dtu.dk. ORCID
  4. Ulrich Krühne: Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark. ulkr@kt.dtu.dk. ORCID

Abstract

Due to the sensitivity of mammalian cell cultures, understanding the influence of operating conditions during a tissue generation procedure is crucial. In this regard, a detailed study of scaffold based cell culture under a perfusion flow is presented with the aid of mathematical modelling and computational fluid dynamics (CFD). With respect to the complexity of the case study, this work focuses solely on the effect of nutrient and metabolite concentrations, and the possible influence of fluid-induced shear stress on a targeted cell (cartilage) culture. The simulation set up gives the possibility of predicting the cell culture behavior under various operating conditions and scaffold designs. Thereby, the exploitation of the predictive simulation into a newly developed stochastic routine provides the opportunity of exploring improved scaffold geometry designs. This approach was applied on a common type of fibrous structure in order to increase the process efficiencies compared with the regular used formats. The suggested topology supplies a larger effective surface for cell attachment compared to the reference design while the level of shear stress is kept at the positive range of effect. Moreover, significant improvement of mass transfer is predicted for the suggested topology.

Keywords

References

  1. Connect Tissue Res. 1974;2(2):127-36 [PMID: 4278028]
  2. Biorheology. 2000;37(1-2):95-107 [PMID: 10912182]
  3. Science. 2009 May 8;324(5928):797-801 [PMID: 19325077]
  4. Biotechnol Bioeng. 2007 Aug 15;97(6):1603-16 [PMID: 17304558]
  5. Biotechnol Bioeng. 2006 Aug 20;94(6):1138-46 [PMID: 16586509]
  6. Biotechnol Bioeng. 2008 Oct 1;101(2):408-21 [PMID: 18727036]
  7. Biomech Model Mechanobiol. 2011 Jul;10(4):577-89 [PMID: 20865436]
  8. Biotechnol Bioeng. 1999 Sep 20;64(6):633-43 [PMID: 10417211]
  9. Spine (Phila Pa 1976). 2002 Oct 15;27(20):2220-8; discussion 2227-8 [PMID: 12394897]
  10. Biorheology. 2004;41(3-4):401-10 [PMID: 15299272]
  11. Tissue Eng. 2005 Sep-Oct;11(9-10):1297-311 [PMID: 16259586]
  12. Biotechnol Bioeng. 2015 Dec;112(12):2601-10 [PMID: 26061385]
  13. Biotechnol Bioeng. 1999 Oct 20;65(2):121-32 [PMID: 10458732]
  14. Ann Biomed Eng. 2010 Apr;38(4):1655-63 [PMID: 20069364]
  15. Clin Orthop Relat Res. 2002 Sep;(402):21-37 [PMID: 12218470]
  16. Nat Mater. 2005 Jul;4(7):518-24 [PMID: 16003400]
  17. Biotechnol Prog. 2000 Sep-Oct;16(5):893-6 [PMID: 11027186]
  18. Chem Biol. 1999 Jun;6(6):R157-66 [PMID: 10375544]
  19. Biomech Model Mechanobiol. 2013 Nov;12(6):1169-79 [PMID: 23371525]
  20. Biotechnol Rep (Amst). 2014 Dec 08;5:55-62 [PMID: 28626683]
  21. Biotechnol Bioeng. 2007 Sep 1;98(1):282-94 [PMID: 17318906]
  22. Spine (Phila Pa 1976). 2001 Dec 1;26(23):2543-9 [PMID: 11725234]
  23. Biomaterials. 2011 Aug;32(22):5003-14 [PMID: 21529933]
  24. Biotechnol Prog. 2002 Sep-Oct;18(5):951-63 [PMID: 12363345]
  25. Biotechnol Prog. 2013 Mar-Apr;29(2):452-62 [PMID: 23297021]
  26. Virchows Arch A Pathol Anat Histol. 1980;389(2):167-87 [PMID: 7456325]
  27. Trends Biotechnol. 2008 Apr;26(4):166-72 [PMID: 18261813]
  28. Biotechnol Bioeng. 1994 Mar 25;43(7):597-604 [PMID: 18615759]
  29. J Biomech Eng. 2005 Oct;127(5):758-66 [PMID: 16248305]
  30. Biomech Model Mechanobiol. 2006 Mar;5(1):1-16 [PMID: 16489478]
  31. Biotechnol Bioeng. 2002 Mar 5;77(5):495-516 [PMID: 11788949]

Word Cloud

Created with Highcharts 10.0.0cellscaffoldoperatingconditionsculturesimulationinfluencetissuestudyCFDeffectshearstressdesignsgeometrycomparedsuggestedtopologyDuesensitivitymammalianculturesunderstandinggenerationprocedurecrucialregarddetailedbasedperfusionflowpresentedaidmathematicalmodellingcomputationalfluiddynamicsrespectcomplexitycaseworkfocusessolelynutrientmetaboliteconcentrationspossiblefluid-inducedtargetedcartilagesetgivespossibilitypredictingbehaviorvariousTherebyexploitationpredictivenewlydevelopedstochasticroutineprovidesopportunityexploringimprovedapproachappliedcommontypefibrousstructureorderincreaseprocessefficienciesregularusedformatssupplieslargereffectivesurfaceattachmentreferencedesignlevelkeptpositiverangeMoreoversignificantimprovementmasstransferpredictedEfficientComputationalDesignScaffoldCartilageCellRegenerationmicro-bioreactoroptimizationengineering

Similar Articles

Cited By