The Human Cathelicidin Antimicrobial Peptide LL-37 Promotes the Growth of the Pulmonary Pathogen Aspergillus fumigatus.

Gerard Sheehan, Gudmundur Bergsson, Noel G McElvaney, Emer P Reeves, Kevin Kavanagh
Author Information
  1. Gerard Sheehan: Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
  2. Gudmundur Bergsson: Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Co. Dublin, Ireland.
  3. Noel G McElvaney: Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Co. Dublin, Ireland.
  4. Emer P Reeves: Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Beaumont, Co. Dublin, Ireland.
  5. Kevin Kavanagh: Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland kevin.kavanagh@mu.ie.

Abstract

The pulmonary mucus of cystic fibrosis (CF) patients displays elevated levels of the cathelicidin antimicrobial peptide LL-37, and the aim of this work was to assess the effect of LL-37 on the growth of , a common pathogen of CF patients. Exposure of to LL-37 and its derived fragment RK-31 (1.95 μg/ml) for 24 h had a positive effect on growth (199.94% ± 6.172% [ < 0.05] and 218.20% ± 4.63% [ < 0.05], respectively), whereas scrambled LL-37 peptide did not (85.12% ± 2.92%). Exposure of mycelium (preformed for 24 h) to 5 μg/ml intact LL-37 for 48 h increased hyphal wet weight (4.37 ± 0.23 g, < 0.001) compared to the control (2.67 ± 0.05 g) and scrambled LL-37 (2.23 ± 0.09 g) treatments. Gliotoxin secretion from LL-37 exposed hyphae (169.1 ± 6.36 ng/mg hyphae, < 0.05) was increased at 24 h compared to the results seen with the control treatment (102 ± 18.81 ng/mg hyphae) and the scrambled LL-37 treatment (96.09 ± 15.15 ng/mg hyphae). Shotgun proteomic analysis of 24-h LL-37-treated hyphae revealed an increase in the abundance of proteins associated with growth (eukaryotic translation initiation factor 5A [eIF-5A] [16.3-fold increased]), tissue degradation (aspartic endopeptidase [4.7-fold increased]), and allergic reactions (Asp F13 [10-fold increased]). By 48 h, there was an increase in protein levels indicative of cellular stress (glutathione peroxidase [9-fold increased]), growth (eIF-5A [6-fold increased]), and virulence (RNase mitogillin [3.7-fold increased]). These results indicate that LL-37 stimulates growth and that this stimulation can result in increased fungal growth and secretion of toxins in the lungs of CF patients.

Keywords

References

  1. Antimicrob Agents Chemother. 2014;58(4):2240-8 [PMID: 24492359]
  2. Infect Immun. 1995 Oct;63(10):3796-803 [PMID: 7558282]
  3. Eukaryot Cell. 2012 Oct;11(10):1226-38 [PMID: 22903976]
  4. J Clin Invest. 2003 Jun;111(11):1665-72 [PMID: 12782669]
  5. Blood. 2001 Jun 15;97(12):3951-9 [PMID: 11389039]
  6. FEBS Lett. 1996 Nov 25;398(1):74-80 [PMID: 8946956]
  7. Lung Cancer. 2008 Jan;59(1):12-23 [PMID: 17764778]
  8. Antimicrob Agents Chemother. 1998 Sep;42(9):2206-14 [PMID: 9736536]
  9. J Biol Chem. 2011 Jan 7;286(1):687-706 [PMID: 20940292]
  10. Infect Immun. 2010 Aug;78(8):3585-94 [PMID: 20498262]
  11. Rev Iberoam Micol. 2005 Mar;22(1):1-23 [PMID: 15813678]
  12. Curr Protein Pept Sci. 2005 Feb;6(1):23-34 [PMID: 15638766]
  13. J Immunol. 2011 Dec 15;187(12):6402-9 [PMID: 22095714]
  14. J Med Microbiol. 2010 Jun;59(Pt 6):625-33 [PMID: 20203215]
  15. Microbiology. 2011 May;157(Pt 5):1481-8 [PMID: 21349977]
  16. Thorax. 1972 Jan;27(1):33-7 [PMID: 4622807]
  17. Sci Rep. 2016 Nov 30;6:38184 [PMID: 27901075]
  18. J Invest Dermatol. 2011 Mar;131(3):688-97 [PMID: 21107351]
  19. J Med Microbiol. 2004 Aug;53(Pt 8):719-25 [PMID: 15272057]
  20. Infect Immun. 2015 Jun;83(6):2518-30 [PMID: 25847962]
  21. Mycopathologia. 2004 Jul;158(1):73-9 [PMID: 15487324]
  22. Nature. 2005 Dec 22;438(7071):1151-6 [PMID: 16372009]
  23. Lancet. 2002 Oct 12;360(9340):1144-9 [PMID: 12387964]
  24. J Proteome Res. 2011 May 6;10(5):2508-24 [PMID: 21388144]
  25. J Leukoc Biol. 2005 Apr;77(4):451-9 [PMID: 15569695]
  26. J Bacteriol. 1985 Sep;163(3):1180-5 [PMID: 3897187]
  27. Antimicrob Agents Chemother. 2006 May;50(5):1710-4 [PMID: 16641439]
  28. Mol Immunol. 2010 Apr;47(7-8):1438-49 [PMID: 20303595]
  29. Mol Cell Proteomics. 2012 Dec;11(12):1682-9 [PMID: 22949509]
  30. Biochem J. 2005 Jun 1;388(Pt 2):689-95 [PMID: 15707390]
  31. Microbes Infect. 2007 Jan;9(1):47-54 [PMID: 17196420]
  32. FEMS Microbiol Rev. 2015 Sep;39(5):670-87 [PMID: 25934117]
  33. Clin Infect Dis. 2003 Oct 1;37 Suppl 3:S225-64 [PMID: 12975753]
  34. Sci Rep. 2017 May 12;7(1):1848 [PMID: 28500314]
  35. J Biol Chem. 2000 May 19;275(20):14882-9 [PMID: 10809732]
  36. Antimicrob Agents Chemother. 2013 Mar;57(3):1283-90 [PMID: 23274662]
  37. Infect Immun. 1995 Sep;63(9):3266-71 [PMID: 7543879]
  38. J Proteome Res. 2011 Apr 1;10(4):1794-805 [PMID: 21254760]
  39. J Immunol. 2009 Jul 1;183(1):543-51 [PMID: 19542465]
  40. Microbiology. 2007 Jun;153(Pt 6):1677-92 [PMID: 17526826]
  41. PLoS One. 2013;8(4):e60140 [PMID: 23573236]
  42. Int J Cancer. 2008 Mar 1;122(5):1030-9 [PMID: 17960624]
  43. J Microbiol. 2014 Jul;52(7):581-9 [PMID: 24879350]
  44. Biochim Biophys Acta. 2015 Jul;1849(7):836-44 [PMID: 25979826]
  45. J Immunol. 2014 Nov 15;193(10):5140-8 [PMID: 25305315]
  46. Nihon Ishinkin Gakkai Zasshi. 1999;40(4):217-22 [PMID: 10536308]
  47. Biochim Biophys Acta. 2016 Mar;1858(3):546-66 [PMID: 26556394]
  48. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9541-6 [PMID: 9689116]
  49. Peptides. 2011 Jul;32(7):1469-76 [PMID: 21693141]
  50. Eukaryot Cell. 2007 Dec;6(12):2290-302 [PMID: 17921349]
  51. Biochem J. 2000 Mar 1;346 Pt 2:423-31 [PMID: 10677362]
  52. Am J Respir Crit Care Med. 2012 Nov 15;186(10):999-1007 [PMID: 22904183]
  53. J Clin Microbiol. 2001 May;39(5):1721-30 [PMID: 11325981]
  54. Nat Med. 2007 Aug;13(8):975-80 [PMID: 17676051]
  55. J Immunol. 2004 Mar 1;172(5):3070-7 [PMID: 14978112]
  56. Blood. 2005 Mar 15;105(6):2258-65 [PMID: 15546954]
  57. Biol Chem. 2006 Oct-Nov;387(10-11):1495-502 [PMID: 17081124]
  58. Biophys J. 2010 Jan 20;98(2):248-57 [PMID: 20338846]
  59. Antimicrob Agents Chemother. 2011 Jun;55(6):2897-904 [PMID: 21464244]
  60. Biophys J. 2011 Apr 6;100(7):1688-96 [PMID: 21463582]

MeSH Term

Antimicrobial Cationic Peptides
Aspergillus fumigatus
Cystic Fibrosis
Humans
Pulmonary Aspergillosis
Cathelicidins

Chemicals

Antimicrobial Cationic Peptides
Cathelicidins

Word Cloud

Created with Highcharts 10.0.0LL-37±0growthincreased]hhyphae<CFpatientspeptide24scrambled2increasedgng/mgcysticfibrosislevelscathelicidinantimicrobialeffectExposure1μg/ml6[05]44823comparedcontrol0509secretionresultstreatment15increase7-foldAspergillusfumigatuspulmonarymucusdisplayselevatedaimworkassesscommonpathogenderivedfragmentRK-3195positive19994%172%21820%63%respectivelywhereas8512%92%myceliumpreformed5intacthyphalwetweight3700167treatmentsGliotoxinexposed16936seen102188196Shotgunproteomicanalysis24-hLL-37-treatedrevealedabundanceproteinsassociatedeukaryotictranslationinitiationfactor5A[eIF-5A][163-foldtissuedegradationasparticendopeptidase[4allergicreactionsAspF13[10-foldproteinindicativecellularstressglutathioneperoxidase[9-foldeIF-5A[6-foldvirulenceRNasemitogillin[3indicatestimulatesstimulationcanresultfungaltoxinslungsHumanCathelicidinAntimicrobialPeptidePromotesGrowthPulmonaryPathogeninnateimmunity

Similar Articles

Cited By